期刊检索

  • 2025年第23卷
  • 2024年第22卷
  • 2023年第21卷
  • 2022年第20卷
  • 2021年第19卷
  • 2020年第18卷
  • 2019年第17卷
  • 2018年第16卷
  • 2017年第15卷
  • 2016年第14卷
  • 2015年第13卷
  • 2014年第12卷
  • 2013年第11卷
  • 第1期
  • 第2期

主管单位 工业和信息化部 主办单位 哈尔滨工业大学 主编 任南琪 国际刊号ISSN 1672-5565 国内刊号CN 23-1513/Q

期刊网站二维码
微信公众号二维码
引用本文:肖凯,邹任玲.基于表面肌电信号的人体动作识别算法研究进展[J].生物信息学,2018,16(2):76-82.
XIAO Kai,ZOU Renling.Research on human body motion recognition algorithm based on surface EMG signal[J].Chinese Journal of Bioinformatics,2018,16(2):76-82.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1939次   下载 1628 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于表面肌电信号的人体动作识别算法研究进展
肖凯,邹任玲
(上海理工大学 医疗器械与食品学院, 上海200093)
摘要:
表面肌电信号(Surface Electromyography,sEMG)是通过相应肌群表面的传感器记录下来的一维时间序列非平稳生物电信号,不但反映了神经肌肉系统活动,对于反映相应动作肢体活动信息同样重要。而模式识别是肌电应用领域的基础和关键。为了在应用基于表面肌电信号模式识别中选取合适算法,本文拟对基于表面肌电信号的人体动作识别算法进行回顾分析,主要包括模糊模式识别算法、线性判别分析算法、人工神经网络算法和支持向量机算法。模糊模式识别能自适应提取模糊规则,对初始化规则不敏感,适合处理sEMG这样具有严格不重复的生物电信号;线性判别分析对数据进行降维,计算简单,但不适合大数据;人工神经网络可以同时描述训练样本输入输出的线性关系和非线性映射关系,可以解决复杂的分类问题,学习能力强;支持向量机处理小样本、非线性的高维数据优势明显,计算速度快。比较各方法的优缺点,为今后处理此类问题模式识别算法选取提供了参考和依据。
关键词:  表面肌电信号  模糊模式识别  线性判别分析  人工神经网络  支持向量机
DOI:10.3969/j.issn.1672-5565.201708005
分类号:R318.04
文献标识码:A
基金项目:上海市科学技术委员会科研计划项目(15441906200).
Research on human body motion recognition algorithm based on surface EMG signal
XIAO Kai, ZOU Renling
(School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract:
The surface EMG signal is a one-dimensional time series of non-stationary bioelectrical signals recorded by the sensor on the surface of the corresponding muscle. It not only reflects the neuromuscular system activity, but also is important for reflecting the corresponding action limb activity information. In terms of EMG applications, pattern recognition is the very basis and key. In order to select the appropriate algorithm based on surface EMG pattern recognition, this paper reviewed and analyzed body motion recognition algorithm based on surface EMG signal, which included fuzzy pattern recognition algorithm, linear discriminant analysis algorithm, artificial neural network algorithm, and support vector machine algorithm. Fuzzy pattern recognition can be used to extract the fuzzy rules, which is insensitive to the initialization rules and is suitable for processing rigorous, non-repetitive bioelectrical signals like sEMG. The linear discriminant analysis reduces the data dimension and its calculation process is simple, but this method is not suitable for large data. With strong learning ability, the artificial neural network can describe the linear relationship between the input and output of the training sample and the nonlinear mapping relationship, which can be used to solve complex classification problem. Support vector machine is obviously advantageous in processing small sample and nonlinear high-dimensional data with high-speed calculation. The advantages and disadvantages of each method were compared in this paper, which provides a reference and basis for the selection of pattern recognition algorithms.
Key words:  Surface electromyography  Fuzzy pattern recognition  Linear discriminant analysis  Artificial neural networks  Support vector machine

友情链接LINKS

关闭