期刊检索

  • 2024年第22卷
  • 2023年第21卷
  • 2022年第20卷
  • 2021年第19卷
  • 2020年第18卷
  • 2019年第17卷
  • 2018年第16卷
  • 2017年第15卷
  • 2016年第14卷
  • 2015年第13卷
  • 2014年第12卷
  • 2013年第11卷
  • 第1期
  • 第2期

主管单位 工业和信息化部 主办单位 哈尔滨工业大学 主编 任南琪 国际刊号ISSN 1672-5565 国内刊号CN 23-1513/Q

期刊网站二维码
微信公众号二维码
引用本文:韩心怡,刘毅慧.蛋白质二级结构预测服务器PSRSM[J].生物信息学,2020,18(2):116-126.
HAN Xinyi,LIU Yihui.Protein secondary structure prediction Server PSRSM[J].Chinese Journal of Bioinformatics,2020,18(2):116-126.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2167次   下载 2409 本文二维码信息
码上扫一扫!
分享到: 微信 更多
蛋白质二级结构预测服务器PSRSM
韩心怡,刘毅慧
(齐鲁工业大学(山东省科学院) 计算机科学与技术学院,济南 250300)
摘要:
蛋白质二级结构预测是蛋白质结构研究的一个重要环节,大量的新预测方法被提出的同时,也不断有新的蛋白质二级结构预测服务器出现。试验选取7种目前常用的蛋白质二级结构预测服务器:PSRSM、SPOT-1D、MUFOLD、Spider3、RaptorX,Psipred和Jpred4,对它们进行了使用方法的介绍和预测效果的评估。随机选取了PDB在2018年8月至11月份发布的180条蛋白质作为测试集,评估角度为:Q3、Sov、边界识别率、内部识别率、转角C识别率,折叠E识别率和螺旋H识别率七种角度。上述服务器180条测试数据的Q3结果分别为:89.96%、88.18%、86.74%、85.77%、83.61%,79.72%和78.29%。结果表明PSRSM的预测结果最好。180条测试集中,以同源性30%,40%,70%分类的实验结果中,PSRSM的Q3结果分别为:89.49%、90.53%、89.87%,均优于其他服务器。实验结果表明,蛋白质二级结构预测可从结合多种深度学习方法以及使用大数据训练模型方向做进一步的研究。
关键词:  蛋白质  蛋白质二级结构预测  PSRSM  预测方法评估
DOI:10.12113/201907006
分类号:Q518.1
文献标识码:A
基金项目:国家自然科学基金(No.61375013);山东省自然科学基金(No.ZR2013FM020)资助.
Protein secondary structure prediction Server PSRSM
HAN Xinyi, LIU Yihui
(School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China)
Abstract:
Protein secondary structure prediction is an important part of protein structure research. When a large number of new prediction methods are proposed, new protein secondary structure prediction servers emerge. This paper selects seven commonly used protein secondary structure prediction servers: PSRSM, SPOT-1D, MUFOLD, Spider3, RaptorX, Psipred, and Jpred4 to evaluate their instructions and predicted effects. The evaluation data set is the 180 proteins released by the randomly selected PDB from August to November in 2018. The evaluation parameters are Q3, Sov, boundary recognition rate, internal recognition rate, corner C recognition rate, folding E recognition rate, and spiral H recognition rate. The Q3 results of the above servers were 89.96%, 88.18%, 86.74%, 85.77%, 83.61%, 79.72%, and 78.29%, which show that the prediction results of PSRSM were the best. In the 180 test sets, the results of the classification of 30%, 40%, and 70% homology show that the Q3 results of PSRSM were 89.49%, 90.53%, and 89.87%, respectively, which were superior to other servers. The experimental results suggest that protein secondary structure prediction could be further studied by combining multiple deep learning methods and using the big data training model.
Key words:  Protein  Protein secondary structure prediction  PSRSM  Prediction method evaluation

友情链接LINKS

关闭