结节性甲状腺肿(Nodular goiter,NG)是由于甲状腺内多个区域结构和功能的改变导致滤泡上皮细胞局灶性增生,随后在甲状腺内形成结节[1]。尽管在全民实施食盐加碘后,结节性甲状腺肿的发病率有所下降,但其仍是临床上最常见的甲状腺疾病之一[2]。据报道,结节性甲状腺肿在人群中的发病率约为7%,其癌变率为7%~14%[3]。多数结节性甲状腺肿患者无明显症状,常通过超声或体格检查发现结节,但结节大于3 cm时易产生压迫症状,如呼吸困难、吞咽困难等[4],且患者易合并焦虑、抑郁情绪,治疗意愿较强[5]。目前,西医对于此病尚无特效疗法,指南推荐以临床随访为主[6]。因此,亟需找到结节性甲状腺肿治疗的潜在靶点。
circRNA属于非编码RNA的一种,可作为miRNA海绵或竞争性内源ceRNA,与其它RNA竞争miRNA[7]。而miRNA可通过调节目标mRNA的翻译或稳定性(如细胞增殖、凋亡、分化、免疫等)来发挥细胞功能[8-9]。与其它RNA相比,circRNA因其具有高度保守性及组织器官特异性赋予其具有诊断标志物和治疗靶点的巨大潜力[10]。目前,大量研究发现circRNA可调控不同细胞的增殖与凋亡,如甲状腺细胞、肝细胞、肺癌细胞、血管平滑肌细胞等[11-14]。而甲状腺细胞增殖与凋亡失衡是结节性甲状腺肿发病的主要原因[15]。本研究基于GEO数据库中结节性甲状腺肿组织基因芯片筛选出差异表达circRNA分子,并联合多个生物信息学数据库预测下游miRNA及mRNA,构建circRNA-miRNA-mRNA调控网络,以揭示其发病的分子机制,并为临床诊断和治疗提供参考。
1 资料与方法 1.1 资料来源以“Nodular goiter”, “circRNA”为关键词检索GEO数据库(http://www.ncbi.nlm.nih.gov/geo),筛选出GSE93522数据集。该数据集使用基因芯片技术检测了3例结节性甲状腺肿组织和6例正常组织中circRNA的表达量。
1.2 研究方法 1.2.1 差异表达circRNA的筛选利用R 4.0.2软件Limma包寻找结节性甲状腺肿组织和正常组织中差异表达的circRNA,筛选条件为结节性甲状腺肿组织相对正常组织circRNA表达量变化|logFC|≥1,且校正后P值(采用Benjamini-Hochberg方法对P值进行校正)小于0.05。
1.2.2 差异表达circRNA结合的miRNA预测同时采用4个生物信息数据库对差异表达circRNA潜在结合的miRNA进行预测, 数据库包括circbank(http://www.circbank.cn/searchMiRNA.html)、circinteractome(https://circinteractome.irp.nia.nih.gov/)、miRDB (http://mirdb.org/cgi-bin/custom.cgi)及circatlas (http://circatlas.biols.ac.cn/),同时满足在3个或3个以上数据库中能预测到的视为候选miRNA。
1.2.3 miRNA下游靶基因预测利用TargetScan (http://www.targetscan.org/vert_72/), miRDB (http://mirdb.org/cgi-bin/custom.cgi), miRwalk (http://mirwalk.umm.uni-heidelberg.de/), miRTarBase (https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php), TargetMiner (http://www.isical.ac.in/~bioinfo_miu/targetminer20.htm), RNA22 (https://cm.jefferson.edu/rna22/), RNAInter (http://rnainter.org/) 等7大数据库预测miRNA-mRNA之间可能的靶向关系,至少在上述5个或5个以上数据库能预测到的视为候选miRNA下游mRNA。
1.2.4 靶mRNA GO和KEGG富集分析将预测到的靶mRNA输入在线分析工具(https://cloud.oebiotech.cn)进行基因本体论(Gene ontology,GO)和京都基因与基因组百科全书数据库(Kyoto encyclopedia of genes and genomes,KEGG)富集分析,筛选条件为P < 0.01。
1.2.5 靶mRNA蛋白互作(Protein-protein interaction,PPI)网络及核心基因筛选利用STRING(https://string-db.org/)在线数据库获得预测的靶mRNA蛋白互作网络(截断值为信度评分>0.9),导入Cytoscape 3.9.1软件进一步绘图[16]。分别采用Cytoscape软件的Cytohubba及MOCODE插件(参数设置如下:degree cutoff=2,k-core=2,node score cutoff=0.2,maximum depth=100)[17]及根据Degree值中位数2倍及以上的方法筛选核心基因[18],以上2种方法获得的基因取交集视为最终筛选出的核心基因。
1.2.6 circRNA-miRNA-mRNA调控网络的建立将筛选出的核心基因与miRNA预测靶基因取交集,得到miRNA-核心mRNA靶向关系,构建circRNA-miRNA-核心mRNA调控网络,基于Cytoscape 3.9.1软件进行网络调控的可视化分析。
2 结果 2.1 结节性甲状腺肿组织差异表达circRNAGSE93522数据集共筛选到2个符合条件的差异表达circRNA,2个circRNA均表达上调,分别为hsa_circ_0100181和hsa_circ_0104916,详见表 1。对差异表达circRNA进行后续分析。
通过circbank、circinteractome、miRDB及circatlas 4个生物信息数据库预测差异表达circRNA结合的miRNA共42个。基于TargetScan, miRDB, miRwalk, miRTarBase, TargetMiner, RNA22, RNAInter 7大数据库预测靶miRNA下游mRNA,共获得611对miRNA-mRNA,546个下游靶mRNA,详见表 2。
将预测到的546个靶基因导入在线分析工具进行GO和KEGG富集分析,结果见图 1和图 2。GO富集分析显示,细胞成分注释方面,靶基因最常见的细胞定位是核质,其次为基底膜等;生物过程注释方面,靶基因主要参与RNA聚合酶Ⅱ启动子转录调控、模板DNA转录、细胞增殖调控、器官生长等;分子功能方面,靶基因主要参与肌动蛋白、离子通道、β连环蛋白、蛋白磷酸酶2A的结合等。KEGG富集结果表明,上述靶基因主要富集于癌症相关信号通路、AGE-RAGE in diabetic complications信号通路、Endocytosis, PI3K-Akt信号通路, MicroRNAs in cancer, TGF-beta信号通路等。
通过STRING在线工具获得靶基因蛋白互作网络图,进一步导入Cytoscape软件绘图,见图 3。基于Cytoscape软件筛选出14个核心基因,分别是SP1, IGF1R, RPS6KB1, SMAD2, SMAD3, SMAD4, VEGFA, CCND1, CDK2, HSPA4, HIF1A, CREB1, NR3C1和STAT5A。
根据上述结果最终确定了2个circRNA, 11个miRNA和14个核心mRNA,建立了circRNA-miRNA-mRNA调控网络,展示ceRNA在结节性甲状腺肿中可能的调控机制,见图 4。
大多数非蛋白质编码RNA被认为具有参与细胞稳态的多样化功能。circRNA作为一种非编码RNA,除了直接影响mRNA转录外,还可以通过miRNA海绵或RNA结合蛋白来调控靶基因的表达,对许多生理和病理状态的启动和发展起着关键作用[19]。近年来,大量研究揭示了circRNA-miRNA-mRNA轴在细胞增殖[11-12]、细胞凋亡[13]、胰岛素抵抗[19]、血管生成[20]等中的作用机制。相似的是,这些病理过程同时促进了结节的发生和发展[15, 21]。
目前关于circRNA在结节性甲状腺肿中的作用鲜有报道。本研究基于GEO数据库发现,与正常组织相比,结节性甲状腺肿组织中hsa_circ_0100181和hsa_circ_0104916表达上调,基于生物信息学分析确定了匹配度最高的circRNA-miRNA及miRNA-mRNA。对靶基因进行KEGG富集分析发现它们在PI3K-Akt信号通路富集明显,这与文献报道结果一致[22]。hsa_circ_0100181在人类和小鼠的肠道干细胞中高度表达,并且以肽非依赖性方式调节肠道干细胞的自我更新[23]。而在甲状腺结节患者中发现肠道微生物种类和基因家族数量的减少[24],这提示hsa_circ_0100181可能通过调节肠道功能影响甲状腺代谢。前期研究发现has-miR-1294可直接靶向抑制IGF1R的表达[25]。而在甲状腺中,IGF-1由甲状腺滤泡上皮细胞合成,可通过自分泌及旁分泌的方式调节甲状腺细胞增殖[26],因此hsa_circ_0100181/has-miR-1294/IGF1R调控通路也可能成为治疗结节性甲状腺肿的潜在通路。VEGF能促进血管内皮细胞增殖,改变毛细血管通透性,并通过旁分泌的方式作用于VEGFR从而促进甲状腺内血管生成[27]。VEGF在正常甲状腺组织中呈阴性表达,而在结节性甲状腺肿患者中表达升高[28],本研究结果发现hsa_circ_0104916可通过hsa-miR-3126-5p影响VEGFR表达,这可能促进了结节性甲状腺肿的发生与发展。CREB是一类转录因子,能特异性结合基因启动上游cAMP反应元件[29]。结节性甲状腺肿多由于缺碘引起甲状腺激素合成减少,促甲状腺激素反馈性升高,而促甲状腺激素可通过TSHR-cAMP-PKA途径磷酸化CREB,从而调节NIS和TPO,促进甲状腺组织增生[21]。因此hsa_circ_0104916/has-miR-6834-5p/CREB1调控轴可能是结节性甲状腺肿发病的重要机制。TGF-β1/SMADS信号通路可调控细胞的增殖、凋亡、分化等生物过程[30],而has-miR145-5p负反馈调控TGF-β1/SMADS通路[31],这与本研究的结果吻合,提示hsa_circ_0104916/ has-miR145-5p/SMADS可能在结节性甲状腺肿发生发展中发挥一定的作用。此外,前期研究发现has-miR-605-3p, hsa-miR-1200在细胞增殖及凋亡中发挥重要作用[32-33],但其在甲状腺细胞中的作用尚未被揭示。未来可进一步深入研究上述miRNA对甲状腺细胞的作用。
综上所述,本研究确定了16个circRNA-miRNA-mRNA相关信号轴,这些调控轴可能在结节性甲状腺肿的发生发展中占据着重要的位置。由于该结果仅基于生物信息学分析,未来还需要细胞和动物实验进一步验证。
[1] |
KRAVCHENKO V I, ANDRUSYSHYNA I M, LUZANCHUK I A, et al. Association between thyroid hormone status and trace elements in serum of patients with nodular goiter[J]. Biological Trace Element Research, 2020, 196(2): 393-399. DOI:10.1007/s12011-019-01943-9 (0) |
[2] |
LI Yongze, TENG Di, BA Jianming, et al. Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces of mainland China[J]. Thyroid, 2020, 30(4): 568-579. DOI:10.1089/thy.2019.0067 (0) |
[3] |
杜璐迪, 徐蕾, 郑晓冬. 小金丸联合优甲乐对结节性甲状腺肿临床疗效及甲状腺功能影响[J]. 中华中医药学刊, 2022, 40(3): 170-173. DU Ludi, XU Lei, ZHENG Xiaodong. Clinical effect of xiaojin pill combined with euthyrox on thyroid function and effect on nodular goiter[J]. Chinese Archives of Traditional Chinese Medicine, 2022, 40(3): 170-173. DOI:10.13193/j.issn.1673-7717.2022.03.039 (0) |
[4] |
DURANTE C, GRANI G, LAMARTINA L, et al. The diagnosis and management of thyroid nodules: A review[J]. JAMA, 2018, 319(9): 914-924. DOI:10.1001/jama.2018.0898 (0) |
[5] |
沈小璇, 戴强, 严晶, 等. 四海舒郁丸配合优甲乐治疗气郁痰阻型结节性甲状腺肿的临床疗效观察[J]. 世界中西医结合杂志, 2021, 16(2): 342-345. SHEN Xiaoxuan, DAI Qiang, YAN Jing, et al. Clinical observation of sihai shuyu pills combined with youjiale in the treatment of nodular goiter with qi stagnation and phlegm obstruction[J]. World Journal of Integrated Traditional and Western Medicine, 2021, 16(2): 342-345. DOI:10.13935/j.cnki.sjzx.210231 (0) |
[6] |
GHARIB H, PAPINI E, GARBER J R, et al. American association of clinical endocrinologists, american college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules-2016 UPDATE[J]. Endocrine Practice, 2016, 22(5): 622-639. DOI:10.4158/EP161208.GL (0) |
[7] |
ZANG Jiankun, LU Dan, XU Anding. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. Journal of Neuroscience Research, 2020, 98(1): 87-97. DOI:10.1002/jnr.24356 (0) |
[8] |
KABEKKODU S P, SHUKLA V, VARGHESE V K, et al. Clustered miRNAs and their role in biological functions and diseases[J]. Biological Reviews of the Cambridge Philosophical Society, 2018, 93(4): 1955-1986. DOI:10.1111/brv.12428 (0) |
[9] |
LU T X, ROTHENBERG M E. MicroRNA[J]. The Journal of Allergy and Clinical Immunology, 2018, 141(4): 1202-1207. DOI:10.1016/j.jaci.2017.08.034 (0) |
[10] |
王艳君, 许鑫鑫, 鲁意迅, 等. 基于生物信息学分析揭示circRNA-miRNA-mRNA调控网络在胃癌中的作用[J]. 河南医学研究, 2022, 31(11): 1921-1925. WANG Yanjun, XU Xinxin, LU Yixun, et al. Role of circRNA-miRNA-mRNA regulatory network in gastric cancer based on bioinformatics analysis[J]. Hennan Medical Research, 2022, 31(11): 1921-1925. DOI:10.3969/j.issn.1004-437X.2022.11.001 (0) |
[11] |
LIU Weiwei, ZHAO Ji, JIN Mingming, et al. circRAPGEF5 contributes to papillary thyroid proliferation and metastatis by regulation miR-198/FGFR1[J]. Molecular Therapy-Nucleic Acids, 2019, 14: 609-616. DOI:10.1016/j.omtn.2019.01.003 (0) |
[12] |
GUO Xueqiang, XI Lingling, LI Lifei, et al. circRNA-14723 promotes hepatocytes proliferation in rat liver regeneration by sponging rno-miR-16-5p[J]. Journal of Cellular Physiology, 2020, 235(11): 8176-8186. DOI:10.1002/jcp.29473 (0) |
[13] |
SHI Lili, LI Yuliang, SHI Meixin, et al. Hsa_circRNA_0008028 deficiency ameliorates high glucose-induced proliferation, calcification, and autophagy of vascular smooth muscle cells via miR-182-5p/TRIB3 Axis[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022: 5142381. DOI:10.1155/2022/5142381 (0) |
[14] |
CHEN Lijian, NAN Aruo, ZHANG Nan, et al. Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer[J]. Molecular Cancer, 2019, 18(1): 13. DOI:10.1186/s12943-019-0943-0 (0) |
[15] |
曾明星. 活血消瘿方治疗结节性甲状腺肿的临床经验及调控PI3K/Akt信号通路的机制研究[D]. 武汉: 湖北中医药大学, 2017. ZENG Mingxing. Research on clinical experience in the treatment of nodular goiter by using Huo Xue Xiao Ying fang and the mechanism in regulation of PI3K/Akt signal pathway[D]. Wuhan: Hubei University of Chinese Medicine, 2017. (0) |
[16] |
王旭杰, 张菀桐, 王妙然, 等. 基于网络药理学与化学成分研究的连花清瘟胶囊治疗新型冠状病毒肺炎作用机制探讨[J]. 世界科学技术-中医药现代化, 2020, 22(9): 3169-3177. WANG Xujie, ZHANG Wantong, WANG Miaoran, et al. Mechanism of lianhua qingwen capsule for the treatment of coronavirus disease 2019 (COVID-19) based on network pharmacology and chemical composition research[J]. Modernization of Traditional Chinese Medicine and Materia Materia-World Science and Technology, 2020, 22(9): 3169-3177. DOI:10.11842/wst.20200616005 (0) |
[17] |
侯森泷, 张福利. 基于网络药理学与分子对接的腰痛宁胶囊治疗腰椎间盘突出症的作用机制研究[J]. 中医杂志, 2022, 63(16): 1573-1579. HOU Senlong, ZHANG Fuli. The mechanism of yaotongning capsule in treating lumbar disc herniation: Based on network pharmacology and molecular docking[J]. Journal of Traditional Chinese Medicine, 2022, 63(16): 1573-1579. DOI:10.13288/j.11-2166/r.2022.16.013 (0) |
[18] |
吴沁航, 朱丽文, 陈子慧, 等. 基于网络药理学及实验验证探析雷公藤治疗三阴性乳腺癌的分子机制[J]. 中国实验方剂学杂志, 2022, 28(6): 131-141. WU Qinhang, ZHU Liwen, CHEN Zihui, et al. Mechanism of tripterygium wilfordii in treatment of triple negative breast cancer based on network pharmacology and experimental validation[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(6): 131-141. DOI:10.13422/j.cnki.syfjx.20220625 (0) |
[19] |
SAKSHI S, JAYASURIYA R, GANESAN K, et al. Role of circRNA-miRNA-mRNA interaction network in diabetes and its associated complications[J]. Molecular Therapy-Nucleic Acids, 2021, 26: 1291-1302. DOI:10.1016/j.omtn.2021.11.007 (0) |
[20] |
YU Manya, YU Jie, ZHANG Yanyu, et al. A novel circRNA-miRNA-mRNA network revealed exosomal circ-ATP10A as a biomarker for multiple myeloma angiogenesis[J]. Bioengineered, 2022, 13(1): 667-683. DOI:10.1080/21655979.2021.2012553 (0) |
[21] |
WANG ChangLin, GAO MingZhou, GAO XiangJu, et al. Mechanism study on chinese medicine in treatment of nodular goiter[J/OL]. Chinese Journal of Integrative Medicine, 2022. https://doi.org/10.1007/s11655-022-3724-3. DOI: 10.1007/s11655-022-3724-3.
(0) |
[22] |
梁伟, 孙禹, 陈丽新, 等. 消瘰丸基于PI3K/Akt/mTORC1通路对实验性甲状腺肿大鼠的干预机制[J]. 中国实验方剂学杂志, 2022, 28(8): 30-36. LIANG Wei, SUN Yu, CHEN Lixin, et al. Intervention mechanism of xiaoluowan on experimental goiter rats based on PI3K/Akt/mTORC1 pathway[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(8): 30-36. DOI:10.13422/j.cnki.syfjx.20220603 (0) |
[23] |
ZHU Pingping, ZHU Xiaoxiao, WU Jiayi, et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3[J]. Nature Immunology, 2019, 20(2): 183-194. DOI:10.1038/s41590-018-0297-6 (0) |
[24] |
LI Ang, LI Tiantian, GAO Xinxin, et al. Gut microbiome alterations in patients with thyroid nodules[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 643968. DOI:10.3389/fcimb.2021.643968 (0) |
[25] |
ZHANG Yong, HUANG Sanxiu, GUO Yu, et al. MiR-1294 confers cisplatin resistance in ovarian Cancer cells by targeting IGF1R[J]. Biomedicine Pharmacotherapy, 2018, 106: 1357-1363. DOI:10.1016/j.biopha.2018.07.059 (0) |
[26] |
吴淑琼, 王志宏, 张静, 等. 活血消瘿方对结节性甲状腺肿患者血清VEGF、IGF-1、TGF-β1的影响[J]. 现代医院, 2019, 19(3): 447-449+453. WU Shuqiong, WANG Zhihong, ZHANG Jing, et al. Effect of huoxue xiaoying prescription on serum levels of VEGF, IGF-1 and TGF-beta 1 in patients with nodular goiter[J]. Modern Hospitals, 2019, 19(3): 447-449+453. DOI:10.3969/j.issn.1671-332X.2019.03.039 (0) |
[27] |
司海燕, 田甜, 王国庆, 等. 平消胶囊联合左甲状腺素钠治疗结节性甲状腺肿的临床研究[J]. 现代药物与临床, 2020, 35(9): 1804-1807. SI Haiyan, TIAN Tian, WANG Guoqing, et al. Clinical study on pingxiao capsules combined with levothyroxine sodium in treatment of nodular goiter[J]. Drugs & Clinic, 2020, 35(9): 1804-1807. DOI:10.7501/j.issn.1674-5515.2020.09.015 (0) |
[28] |
姚金科, 胡才学, 何文广, 等. 应用基因芯片技术研究非毒性结节性甲状腺肿基因表达的初步研究[J]. 中国医药科学, 2014, 4(1): 27-30. YAO Jinke, Hu Caixue, HE Wenguang, et al. Primary research expression profiles on correlated gene of in nontoxic nodular goiter[J]. China Medicine and Pharmacy, 2014, 4(1): 27-30. (0) |
[29] |
李金燕, 董静, 王毅, 等. 碘缺乏和甲状腺功能减退对大鼠仔鼠小脑cAMP反应元件结合蛋白表达的影响[J]. 环境与健康杂志, 2009, 26(11): 947-949+1035. LI Jinyan, DONG Jing, WANG Yi, et al. Effects of iodine deficient and hypothyrosis on protein expression of CREB in the cerebellum of rats[J]. Journal of Environment and Health, 2009, 26(11): 947-949+1035. DOI:10.16241/j.cnki.1001-5914.2009.11.045 (0) |
[30] |
ZHANG Bin, YE Huilin, REN Xiaofan, et al. Macrophage-expressed CD51 promotes cancer stem cell properties via the TGF-β1/smad2/3 axis in pancreatic cancer[J]. Cancer Letters, 2019, 459: 204-215. DOI:10.1016/j.canlet.2019.06.005 (0) |
[31] |
王晴晴, 谌曦, 万磊, 等. 基于miR145-5p负反馈调控TGF-β1/Smads通路抑制巨噬细胞极化的实验研究[J]. 海南医学院学报, 2022, 28(23): 1803-1809. WANG Qingqing, SHEN Xi, WAN Lei, et al. Experimental study of TGF-β1/Smads pathway inhibition of macrophage polarization based on miR145-5P negative feedback regulation[J]. Journal of Hainan Medical University, 2022, 28(23): 1803-1809. DOI:10.13210/j.cnki.jhmu.20220815.002 (0) |
[32] |
WANG Qilong, HAO Xiaomin, XU Gang, et al. Downregulated KIF3B Induced by miR-605-3p inhibits the progression of colon cancer via inactivating Wnt/β-Catenin[J]. Journal of Oncology, 2021, 2021: 5046981. DOI:10.1155/2021/5046981 (0) |
[33] |
于海东, 杨海明, 马存凯, 等. circ_0016788靶向调控miR-1200抑制肝癌细胞增殖、迁移和侵袭[J]. 中国老年学杂志, 2023, 43(3): 721-726. YU Haidong, YANG Haiming, MA Cunkai, et al. circ__0016788 targeted regulation of miR-1200 inhibits proliferation, migration and invasion of hepatocellular carcinoma cells[J]. Chinese Journal of Gerontology, 2023, 43(3): 721-726. DOI:10.3969/j.issn.1005-9202.2023.03.052 (0) |