期刊检索

  • 2024年第22卷
  • 2023年第21卷
  • 2022年第20卷
  • 2021年第19卷
  • 2020年第18卷
  • 2019年第17卷
  • 2018年第16卷
  • 2017年第15卷
  • 2016年第14卷
  • 2015年第13卷
  • 2014年第12卷
  • 2013年第11卷
  • 第1期
  • 第2期

主管单位 工业和信息化部 主办单位 哈尔滨工业大学 主编 任南琪 国际刊号ISSN 1672-5565 国内刊号CN 23-1513/Q

期刊网站二维码
微信公众号二维码
引用本文:侯智超,杨杨,李晓琴.基于三维卷积神经网络的肺结节探测与定位方法[J].生物信息学,2022,20(1):28-34.
HOU Zhichao,YANG Yang,LI Xiaoqin.Detection and location of pulmonary nodules based on 3D convolutional neural network[J].Chinese Journal of Bioinformatics,2022,20(1):28-34.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 981次   下载 611 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于三维卷积神经网络的肺结节探测与定位方法
侯智超,杨杨,李晓琴
(北京工业大学 环境与生命学部,北京 100124)
摘要:
提出一种基于三维卷积神经网络对肺部计算机断层扫描图像(CT)进行肺结节自动探测及定位的方法。基于开源数据集LUNA16开展研究,对数据进行像素归一化、坐标转换等预处理,对正样本使用随机平移、旋转和翻转的方式进行扩充,对负样本进行随机采样。搭建了三维卷积神经网络并在训练过程中调整网络参数,直到得到性能最佳的网络。此外还设计了模型在肺部的三维空间中标记肺结节的方法。经测试,模型的敏感性为93.03%,特异性为97.39%,结果表明所提方法能够较为准确地探测并标记结节。
关键词:  深度学习  三维卷积神经网络  肺结节探测
DOI:10.12113/202012007
分类号:TP183
文献标识码:A
基金项目:国家自然科学基金项目(No.61931013, No.81701644, No.11832003);国家重点研发项目(No.2017YFC0111104).
Detection and location of pulmonary nodules based on 3D convolutional neural network
HOU Zhichao, YANG Yang, LI Xiaoqin
(Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China)
Abstract:
A method for automatic detection and localization of pulmonary nodules based on three-dimensional (3D) convolutional neural networks for computed tomography(CT) images of lungs was proposed. Based on the study conducted on the open source dataset LUNA16, the data were pre-processed with pixel normalization and coordinate conversion. Positive samples were expanded using random translation, rotation, and flip, and random sampling was conducted for negative samples. A 3D convolutional neural network was constructed and the network parameters were adjusted during the training process until the best performance was obtained. The model was also designed to label lung nodules in the 3D space of the lung. The sensitivity of the model was tested to be 93.03% and the specificity was 97.39%, indicating that the proposed method can detect and label nodules more accurately.
Key words:  Deep learning  3D convolutional neural network  Pulmonary nodule detection

友情链接LINKS

关闭