期刊检索

  • 2024年第22卷
  • 2023年第21卷
  • 2022年第20卷
  • 2021年第19卷
  • 2020年第18卷
  • 2019年第17卷
  • 2018年第16卷
  • 2017年第15卷
  • 2016年第14卷
  • 2015年第13卷
  • 2014年第12卷
  • 2013年第11卷
  • 第1期
  • 第2期

主管单位 工业和信息化部 主办单位 哈尔滨工业大学 主编 任南琪 国际刊号ISSN 1672-5565 国内刊号CN 23-1513/Q

期刊网站二维码
微信公众号二维码
引用本文:高艾,王昕苑,苏依琳,苏龙龙,张建辉,牛晓辰.利用TCGA数据库构建肾透明细胞癌相关miRNA预后模型[J].生物信息学,2021,19(4):260-269.
GAO Ai,WANG Xinyuan,SU Yilin,SU Longlong,ZHANG Jianhui,NIU Xiaochen.Exploiting the TCGA database to establish a prognostic model of miRNAs associated with kidney renal clear cell carcinoma[J].Chinese Journal of Bioinformatics,2021,19(4):260-269.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1148次   下载 693 本文二维码信息
码上扫一扫!
分享到: 微信 更多
利用TCGA数据库构建肾透明细胞癌相关miRNA预后模型
高艾,王昕苑,苏依琳,苏龙龙,张建辉,牛晓辰
(山西医科大学,太原 030000)
摘要:
利用TCGA数据库中肾透明细胞癌的miRNA与mRNA数据及临床信息,构建由miRNA组成的预后风险评分模型,并筛选与生存预后相关的miRNA-mRNA调控关系对,为研究提供理论依据。下载并整理TCGA[JP+1]数据库中肾透明细胞癌的miRNA与mRNA数据;对数据进行差异分析,将差异表达的miRNA与临床信息进行合并,利用单因素与多因素Cox回归分析,构建预后模型并进行模型评价;对模型中的miRNA进行靶基因预测,结果与差异表达的mRNA进行取交集,构建miRNA-mRNA调控网络;对网络中的mRNA进行生存分析,筛选生存相关的miRNA-mRNA调控关系对。共得到49个差异表达的miRNA与3 613个差异表达的mRNA;预后模型计算公式为:风险值(risk score)=hsa-miR-21-5p表达量×0.603+hsa-miR-1251-5p表达量×-0.093;调控网络中共纳入31个miRNA-mRNA调控关系对;对mRNA进行生存分析,共得到7个有价值的关系对。所构建预后模型可有效预测肾透明细胞癌患者生存预后情况,筛选到的miRNA-mRNA调控关系对可为相关研究与治疗提供参考。
关键词:  肾透明细胞癌  miRNA-mRNA  预后模型  TCGA数据库
DOI:10.12113/202008003
分类号:R737.11
文献标识码:A
基金项目:
Exploiting the TCGA database to establish a prognostic model of miRNAs associated with kidney renal clear cell carcinoma
GAO Ai, WANG Xinyuan, SU Yilin, SU Longlong, ZHANG Jianhui, NIU Xiaochen
(Shanxi Medical University, Taiyuan 030000, China)
Abstract:
HJ1.5mm]To provide theoretical basis for further research,a prognostic risk score model of kidney renal clear cell carcinoma was constructed based on the miRNA and mRNA expression profiles and clinical information in the TCGA database, and the miRNA-mRNA regulatory relationships related to survival prognosis were selected. The miRNA and mRNA expression profiles of kidney renal clear cell carcinoma were downloaded from the TCGA database and collated. Differential analysis was performed on the data, and the differentially expressed miRNAs were combined with clinical information. Univariate and multivariate Cox regression analyses were used to construct the prognostic model and conduct model evaluation. Target genes of miRNAs in the model were predicted, and the results were intersected with differentially expressed mRNAs to construct the miRNA-mRNA regulatory network. Survival analysis was performed on the mRNAs in the network to screen the miRNA-mRNA regulatory pairs related to survival. A total of 49 differentially expressed miRNAs and 3 613 differentially expressed mRNAs were obtained and the formula of prognostic model was: risk score=hsa-miR-21-5p expression×0.603+hsa-miR-1251-5p expression×-0.093. Thirty-one miRNA-mRNA regulatory pairs were included in the network and seven miRNA-mRNA regulatory pairs were selected. The prognostic model can effectively predict the survival and prognosis of patients with kidney renal clear cell carcinoma, and the selected miRNA-mRNA regulatory pairs can provide reference for related research and clinical treatment.
Key words:  Kidney renal clear cell carcinoma  miRNA-mRNA  Prognostic model  TCGA database

友情链接LINKS

关闭