期刊检索

  • 2024年第22卷
  • 2023年第21卷
  • 2022年第20卷
  • 2021年第19卷
  • 2020年第18卷
  • 2019年第17卷
  • 2018年第16卷
  • 2017年第15卷
  • 2016年第14卷
  • 2015年第13卷
  • 2014年第12卷
  • 2013年第11卷
  • 第1期
  • 第2期

主管单位 工业和信息化部 主办单位 哈尔滨工业大学 主编 任南琪 国际刊号ISSN 1672-5565 国内刊号CN 23-1513/Q

期刊网站二维码
微信公众号二维码
引用本文:汪慧,丁德武,孙啸,谢建明.整合转录组学数据的代谢网络研究进展[J].生物信息学,2016,14(3):160-166.
WANG Hui,DING Dewu,SUN Xiao,XIE Jianming.Development of integrating transcriptomic data into matebolic network analysis[J].Chinese Journal of Bioinformatics,2016,14(3):160-166.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3100次   下载 2847 本文二维码信息
码上扫一扫!
分享到: 微信 更多
整合转录组学数据的代谢网络研究进展
汪慧,丁德武,孙啸,谢建明
(东南大学生物科学与医学工程学院,南京 210096)
摘要:
高通量测序技术的快速发展催生了涵盖各层次细胞生命活动的组学数据,如转录组学数据、蛋白质组学数据和互作组学数据等。同时,全基因组代谢网络模型在不断完善和增多。整合组学数据,对生物细胞的代谢网络进行更深入的模拟分析成为目前微生物系统生物学研究的热点。目前整合转录组学数据进行全基因组代谢网络分析的方法主要以流量平衡分析(FBA)为基础,通过辨识不同条件下基因表达的变化,进而优化目标函数以得到相应的流量分布或代谢模型。本文对整合转录组学数据的FBA分析方法进行总结和比较,并详细阐述了不同方法的优缺点,为分析特定问题选择合适的方法提供参考。
关键词:  代谢网络,转录组学,流量平衡分析,算法
DOI:10.3969/j.issn.1672-5565.2016.03.06
分类号:Q493.2
文献标识码:A
基金项目:国家自然科学基金项目(61472078)。
Development of integrating transcriptomic data into matebolic network analysis
WANG Hui,DING Dewu,SUN Xiao,XIE Jianming
(College of Biological Science and Medical Engineering,Southeast University,Nanjing 210096,China)
Abstract:
With the advent of high-throughput technologies, the field of systems biology has amassed an abundance of developed metabolic network models and “omics” data, such as transcriptomic data, proteomic data and interactomic data. How to integrate omics data into metabolic network for further simulation analysis is becoming a hot spot of the microbial systems biology research. Several published studies have successfully demonstrated that the flux balance analysis(FBA) , a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network model reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for intergrating expression data into genome-scale metabolic network reconstruction, highlighting the advantages as well as the limitations,and offer the suggestion to select appropriate method to a specific issue.
Key words:  Metabolic network  Transcriptomics  Flux balance analysis  Algorithm

友情链接LINKS

关闭