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A short review of protein fold recognition methods
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Abstract ; Protein fold recognition method is one of template-based protein three-dimensional structure modeling
methods and was elegantly used in many fields of biological sciences. We witnessed the development of a series of
novel fold recognition algorithms using different computational techniques in the past ten years.Machine learning and
profile-profile alignment are widely used and effective methods.In addition the enlarging Protein Data Bank is one of
important factors that substantially enhance the accuracy of prediction.In this paper,we briefly reviewed the state-of-
the-art algorithms used in the protein fold recognition and some potential aspects that can be used to improve
performance were also discussed.
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require amazing funding, especially for some membrane

1 INTRODUCTION

proteins ,such as G protein-coupled receptors( GPCRs) "’
Alternately , protein 3D structures can also be predicted
which aim to predict the

Protein three-dimensional (3D ) structures contain essential by computational algorithms,

information to characterize the protein functions. The 3D
structure of a protein can be obtained through wet
experimental methods, including X-ray crystallography'"
and NMR spectroscopy > . Unfortunately , wet experiments

for protein 3D determination are generally time-

consuming, and, moreover, such experiments usually
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correct 3D structure of a protein from its primary
sequence. In fact, protein structure prediction methods
have been widely used and show effective performance
in many aspects of biological sciences'*>'.

Depending on utilizing algorithms , protein structure

prediction methods can be roughly divided into three
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categories ; ( 1) homology modeling, (2) fold recognition,
(3) free modeling. Both homology modeling and fold
be

[6,7]

recognition  can regarded as template-based

modeling methods"™"". The most difference between

homology modeling and fold recognition is that
structural- and profile-based terms are intensively used
in fold recognition while homology modeling mainly

the

Homology modeling methods are designed for targets

relied on information of protein sequences.
that can find closely homologous templates, and such
query proteins are usually called ° Easy’ targets.
However, it is possible that two structurally similar
proteins may share weak sequence similarity (i.e.,
remote homologs ). In the context, fold recognition

methods are designed to identify remotely homologous

templates. Unlike template-based methods, free
modeling, which is also called ab initio protein
folding, can be built from scratch and closely

homologous templates are not required in the meantime.
However, free modeling generally requires longer
computational time and more computational resources,
which restricts its success only to small proteins. Free
modeling algorithms are only successfully applied to
small proteins because of such restrictions.

As clearly pointed out by Baker and Sali'®,
template-based modeling is the most reliable approach
to protein 3D structure prediction. Moreover, in our
previous work , we have proven that the qualities of
protein 3D models by template-based modeling methods
be

alighments are as accurate as structure alignments

can significantly increased when sequence

[9] )
Compared to homology modeling, fold recognition is
more challenging, exciting and important in the current
post-genomic era. Profile-based methods are widely
used in fold recognition. Profiles are usually calculated
from multiple sequence alignments ( MSAs ) obtainedby
PSI-BLAST''®'. Two types of sequence profiles exist.
One is position-specific scoring matrix ( PSSM) , the other
is hidden Markov model (HMM ). HMMs can be represented
by a chain of match and insert/deletion nodes with the
MSAs .

During the last decade, a variety of fold
recognition methods have been elegantly developed (e.
g., FFAS'" | FFAS-3D'" | HHsearch'®', RaptorX'"*',
DescFold"®' ,MUSTER'"® and SPARK-X'"") and some

elegant web servers have also been freely accessible to

the research community. FFAS probably is the first
publicly available profile-profile alignment web server for
fold recognition. FFAS only uses sequence profile in its
scoring function. Xu et al. extended the algorithm and
proposed a new algorithm called FFAS-3D by including
structural terms for identifying remote homologs. In
addition,Zhou group developed a series of profile-profile
alignment methods for fold recognition ,including SPARK,
SPARK2, SPARK3, SPARK5 and SPARK-X'"™. The
SPARK-X is the newest version of the SPARK series
programs.HHsearch is an HMM-HMM alignment method.
There are some differences among these methods. In the
following sections of this manuscript, we will review
representatives of these classical and popular fold

recognition methods.

2 Representative protein fold recognition

methods

2.1

fold recognition methods

A general flow chart for the development of

Although different computational techniques were used
by different research groups to develop effective fold
recognition algorithms, these methods usually can be

summed up in a similar procedure(Fig.1).

'&&é,;

>Query Sequence -~ Sx Template Alignment Model
VNIKTNPEK..Z> 552> | identification| | generation | > building

Fig.1 A general flow chart for protein fold
recognition methods

First, a (remotely ) homologous protein with known
structure is identified as a template from Protein Data
Bank ( http ://www. rcsb. org/ pdb/home/home. do) for a
query sequence based on sequence similarity and
sequence-structure compatibility. To make the template
identification fast and reliable, a filtered database of
Protein Data Bank with sequence identity less than 70%
or 50% is usually employed. Meanwhile, almost all the
major fold recognition programs used scores derived
from profile-profile alignment to identify templates. Machine
learning algorithms, such as neural network'"' random
forest' ™ and support vector machine'*’ have also been
employed to develop scoring functions for template

identification. The scoring function developed here can
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be regarded as a measure to evaluate how well the
query sequence fits into a structurally known protein.
The measures to select suitable templates usually rely
on match ZScore or e-value (Fig.2).
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Fig.2 Alignment measures to select templates

The templates with ZScore or e-value better than
pre-defined cutoffs are selected. The second step is to
obtain an optimal alignment between the query and the
template sequences. The accuracy of the alignment is
highly important to the model building. Finally, several
full-length and refined 3D models of the query protein
are built based on the satisfaction of spatial
restraints' 2! by considering template atom coordinates
and the alignment of query-template. In Fig. 1, we
summarize this general flowchart for the development of
typical fold recognition methods. Furthermore, it is
valuable for readers to know the publicly available and
state-of-the-art web servers/tools for fold recognition
methods. Here, several tools and their web servers are
listed in Table 1.

Representatives of these popular fold recognition
methods are introduced as follows.

2.1.1 FFAS and FFAS-3D

FFAS''" is a simple profile-profile alignment program
without using structural information.First, FFAS obtains
multiple sequence alignments(MSAs) by PSI-BLAST searching
against a database called NR85s database with 5

iterations with an e-value threshold of 0.001.Second,
FFAS uses a similar way to Henikoff weight to calculate
sequence profiles.Then, a dot-product scoring function
is used to align two sequence profiles. The scoring
function S(i, j) for aligning the ith residue on the query
and the jth residue on the template of FFAS is as

Table 1 State-of-the-art fold recognition methods

Method Web link Downloadable
FFAS&FFAS-3D  hitp://ffas.sanfordburnham. org Yes
HHsearch http://toolkit. tuebingen. mpg. de/ Yes
hhpred
HHblits http://toolkit. tuebingen. mpg. de/ Yes
hhblits
MUSTER http : //zhanglab. cemb. med. umich. Yes
edu/MUSTER
Phyre http : //www.sbg.bio.ic.ac.uk/phyre No
DescFold http://protein.  cau. edu. cn/ No
DescFold/
GenTHREADER  http://bioinf.cs.ucl.ac.uk/ psipred/ Yes
SPARK-X http : //sparks-lab. org/ yueyang/ Yes
server/ SPARKS-X
LOMETS http : //zhanglab. ccmb. med. umich. Yes
edu/LOMETS/
Pcons http : //pcons.net/ Yes
RaptorX http : //raptorx.uchicago.edu Yes

0

S(iy) = ; zljﬁ(i,MBL(k,m)ﬁﬂ(i,m) (1)
where ffg(i,k) and ffi (j,m) stand for the sequence
frequency of kth residue at the ith position and mth
residue at the jth position for query and template profiles,
respectively.Finally, the significance of alignment scores
is calculated by comparing the protein with the
distribution of scores obtained from pairs of unrelated
proteins. FFAS is widely used by many labs in many
applications. Recently, Xu et al. extended the FFAS
method and developed a method called FFAS-3D by using
structural features. It is reported that the performance of
FFAS-3D is much better than that of FFAS, especially
for hard targets. The scoring function of FFAS-3D is as

20 2
S(i,j) = kz > M, (k) BLCk m)ff,(j,m)

=lm=1

3
+ X wAl (2)
n=1
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where anA?,j is a newly added term for

aml
structural features (i.e., secondary structure, solvent
accessibility and residue depth).

2.1.2 SPARK-X

SPARK-X is a proven fold recognition method by using
probabilistic-based ~ alignment ~ between  predicted
properties of query and corresponding native properties
of templates. There are several variants of SPARKS
developed by Zhou group, such as SPARK2, SPARK3
and SPARKS. Among them, SPARK-X is the newest
version. The performance of SPARK-X mainly relies on
the significantly improved predictions of structural
properties, such as secondary structure, real value
torsion angle and solvent accessibility.Similar to FFAS-
3D, SPARK-X is also a structurally enhanced profile-

profile alignment method. The scoring function used in

SPARK-X is as

S(i,j)==(1-Ws) ;Fq(i,k)Mt(j,k)

20 3
- WsY Fi(j,k)Mq(i,k) = Y, wA;, + shift
k=1 k=1

where Fq(i, k) represents the frequency of the kth amino
acid at the ith position of the MSAs obtained by PSI-
BLAST search for a query sequence against the NCBI'*
NR database for 3 repeats with an E-value threshold of
0.001.Me(j, k) represents the value in the log-odd profile of
the template for the kth amino acid at the jth position.
Similarly, Ft(j, k) represents the frequency of the kth
amino acid at the jth position for the template. Mq (i,
k) represents the log-odd profile of the template for the
kth amino acid at the ith position. Ws,w,, w, and w;,
are weights to sum up different terms.The shift is used
to avoid aligning any unrelated pairs.

2.1.3 FUGUE

FUGUE'®is a fold recognition method that can search
sequences against fold libraries by utilizing environment-
specific substitution tables and structure-dependent gap
penalties, where amino acid matching scores and
insertions/deletions penalties are evaluated depending
on the local environment of each amino acid residue in a
known structure'®’. Fold library and substitution tables
used in FUGUE are derived from the HOMSTRAD"*"
database. Meanwhile, FUGUE can automatically select
alignment algorithms with detailed structure-dependent

gap penalties. FUGUE has been used as one module in

the
molmod/sybyl-x) commercial package.

2.1.4 GenTHREADER

GenTHREADER '*'is developed by employing a simple
of

score ,

Sybyl-X  ( http;//www. certara. com/products/

19 . .
neural network'™’ to combine various sources

information, such as sequence alignment
sequence length and energy potentials derived from
threading, to a final score, which represents the
homologous relationship between two proteins. The input
features are directly fed into the input layer. The
standard sigmoid activation function is used in the
GenTHREADER. There are two nodes in the output
layers.In the training process, the two nodes of output
layers are encoded as(1,0) for structurally related protein
pairs,and (0,1) for structurally unrelated protein pairs.The
advantage of GenTHREADER is that various types of
information can be used, including profile-profile
alignment and other global features of proteins.

2.1.5 Raptor
[14,26,27]

the

mathematical theory of linear programming approach to

Raptor is a novel method based on
predict 3D models of proteins via fold recognition. In
Raptor method, the protein fold recognition problem is
solved by a large scale integer programming problem.
The profile-profile alignment, secondary structure and
contact map terms, etc, are used in Raptor.
RaptorX'" | which is one variant of Raptor method,
excels at predicting  hard’ targets according to the

2010 CASP9'* experiments ( Table 2).

Table 2 Scoring terms used in single fold recognition methods

Method Profile* ss® SA®  Depth®  Hyd"
FFAS Vv X X X X
FFAS-3D VvV 2 v vV x
HHsearch vV Vv X X X
HHblits vV vV x x x
MUSTER vV vV vV vV vV
Phyre vV vV vV x x
DescFold vV Vv x x x
GenTHREADER ~ V/ Y% 4 % x
SPARK-X 4 Vv vV vV x
RaptorX Y4 Vv Vv x x

2.1.6 Meta methods

Diverse methods are widely used in fold recognition
algorithms and they clearly demonstrated their amazing
success in the CASP'®’ and CAFASP"* competitions
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. . . . 15,31
as well as in real-time LiveBench experiments' "'

Some alignment-free template selection methods have

motif-based fold

assignment >’ and pattern-based protein folds similarity

also been proposed, such as

identification** . Alignment-dependent and alignment-
free methods may be complementary. Meta methods,
which sometimes are also called consensus methods,
are developed by combining well-established and
complementary programs, aiming to further improve the
accuracy of 3D model building by taking into account
the outputs of existing methods. It is found that meta or
consensus methods usually perform better than any
single method that consists of them. The main idea of
meta  methods is  intensively  exploiting  the
complementarity of different methods to enhance the
accuracy of template identification and query-template
alignment generation. For example, LOMETS"*'( Local
Meta-Threading-Server ) obtains 3D models by using
alignments from locally-installed fold
programs, including FFAS-3D'") | HHsearch'"'
MUSTER'' | pGenTHREADER'®',  PPAS"™,
PRC"" ,PROSPECT"™  SP3'"®) and SPARKS-X'"".
The web server of LOMETS is publicly available at

http ://zhanglab. cemb. med. umich. edu/LOMETS/.

[39

recognition

Pcons' ™ is also a meta algorithm consisting of multiple
methods. Pcons selects the best 3D models out of those
produced by six prediction servers by using a neural
network “" . Developers are usually required to carefully
tune the parameters of meta methods to obtain the
optimal performance.

2.2 Development of new fold recognition methods
By analyzing existing methods, the following aspects
probably can be considered to develop improved fold
recognition method.

2.2.1 Novel neural network based scoring function

methods"*"

Most  dynamic  programming alignment
propose scoring functions to simply add different terms as

score(1,j) =a + b + ¢ + shifi (4)
where a, b and ¢ represent profile, secondary
structure- and other structural property-based terms,
respectively. The shift is a constant value to avoid
aligning unrelated residues. Theoretically, such
combination may be not globally optimal. To combine
different measures to make a final decision, neural
network may be one of the best choices. Therefore, a

neural network-based scoring function probably can be

used through the following procedure. First, compile a
large number of non-redundant structurally known
proteins and structurally align them. Second, select the
homologous protein pairs and extract the structure-
based sequence alignments. If the distances of aligned
residue pairs are less than a cutoff (e.g., 5.0 A), we
can consider them ‘positive’ residue pairs, otherwise,
‘negative’ pairs. Then, those terms of the scoring
function can be normalized to the range of 0-1 and fed
into the neural network to train the novel scoring
function for any two residues. To make this idea more
clear, we draw Fig.3 to demonstrate it. Although the
neural network algorithm has been employed in the
template identification, to the best of our knowledge,
the algorithm has not been in the scoring function of
profile-profile alignments.

2.2.2

and sequence alignment

Respective models for template selection

In a fold recognition-based protein structure prediction
procedure , correctly recognizing a suitable template for
a query sequence is the first step.The second step is to
obtain optimal sequence alignment between the query
and the template sequences.Both template identification
and alignment generation are crucial to the final quality
of 3D models. In most methods, however, the trained
parameters obtained in sequence alignment are directly
used in the template selection. A potential problem
existing here is that the parameters trained for
alignment generation probably are not the most optimal
for template selection.Both sets of parameters probably
can be optimized independently, which may obtain
better performance. To get a high quality model,
template selection and alignment generation are nearly
equally important. New fold recognition algorithms
designed with independent scoring functions for
template selection and alignment generation may obtain
higher accuracy.

Two nodes in the output layer, R and U
representing related and unrelated residue pairs,
respectively. Different features, such as sequence
profile-, secondary structure-, contact map- and
structural feature-based terms can be fed into the
neural network to train the neural network model.
Finally, the values output by the trained neural network

can be used as a scoring function in the profile-profile

alignment.
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Fig.3 A novel neural network-based scoring function

2.2.3 Dynamic selection of scoring functions and
gap penalties

Dynamic scoring functions can be employed for
different cases. For example, if query and template are
very similar at the sequence level, the predicted
structural terms can be removed according to the fact
that the prediction accuracy of structural information for
has not reached a

query satisfactory

performance and they may introduce noise in such

sequence

cases. Probably, the following in-depth procedure can
be used. When the global sequence alignment identity
of query-template is higher than 30%, sequence-
sequence alignment method can be directly used to
build the 3D models. When identity between sequence
and structure is less than a pre-defined threshold and
profiles alignment scores are significant, a sequence
based profile-profile alignment scoring function such as
that of FFAS can be employed.Profile-profile alignment
with structural information terms considered should be
used as a last option. Generally, the employed gap
penalty model is affine gap penalty as

(5)

where g is gap opening penalty and r is gap extension

penalty = g + r(x = 1)

penalty with the constrain of |gl>Irl. x is the length of
gap. Meanwhile, position-dependent gap penalty is also
used by some methods. For example,Shi et al. proposed
a structure-dependent gap penalty method'® | in which
the gap penalty for each position is dynamically changed
according to its solvent accessibility, its position relative
to the secondary structure elements ( SSEs) and the
conservation of the SSEs. Some methods employed gap
penalty models derived from evolutionary or secondary
structure information. Zhou group developed a position-

specific gap penalty model'®', in which gap scoring

scheme is derived from statistical analysis of gaps in the
MSAs created by PSI-BLAST.Zhang group presented a
similar gap penalty

method, in which no gap is allowed inside the secondary
16]

structural  position-dependent
structure regions (a-helix and B—strand){
In the direct observation, gaps are subject to occur
in some feasible regions.The gap penalty probably can
be tuned in different regions. Therefore, an optimized
gap penalty model could be constructed based on this
observation. First, the measures of conservation status
should be calculated. Second, the gap penalty models
based on the highly conserved and less conserved
regions could be developed, respectively.The optimized
gap penalty model probably can further improve

sequence-structure alignment accuracy.
3.3 Conclusions

In this manuscript, we reviewed the development
history and key algorithms for protein fold recognition
methods. In recent years, the evolutionary information
generated from iterative PSI-BLAST searches and
enlarging NCBI NR database

enhanced the prediction accuracy. The combination of

have substantially
sequence and structural information has also been
shown to improve the accuracy of fold recognition.
Meanwhile, more and more protein structures are
deposited in the Protein Data Bank and it is much
easier for a fold recognition method to identify correct
query the

development of new fold recognition methods lags

templates for a sequence. Although

behind for several years, the use of this technique is

becoming increasingly wider and deeper in the

biological community.
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