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Analysis of cascading failure in gene networks

SUN Long-xiao, WANG Shu-dong* , LI Kai-kai, MENG Da-zhi
(College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract; It is an important subject to study the functional mechanism of cancer — related genes make information
and development of cancers. The modern methodology of data analysis plays a very important role for deducing the
relationship between cancers and cancer — related genes and analyzing functional mechanism of genome. In this re-
search, we constructed mutual information networks using gene expression profiles of glioblast and renal in normal
condition and cancer conditions. We investigated the relationship between structure and robustness in gene networks
of the two tissues using a cascading failure model based on betweenness centrality. Some important parameters , such
as the percentage of failure nodes of the network, the average size — ratio of cascading failure and the cumulative
probability of size —ratio of cascading failure are defined to measure the robustness of the networks. By comparing
control group and experiment groups, we found that the networks of experiment groups are more robust than those of
control group. The gene that can cause large scale failure is called structural key gene (SKG). Some of them have
been confirmed to be closely, related to the formation and development of glioma and renal cancer, respectively.
Most of them are predicted to play important roles during the formation of glioma and renal cancer, maybe the onco-
genes, suppressor genes, and other cancer candidate genes in the glioma and renal cancer cells. However, these
studies provide little information about the detailed roles of identified cancer genes.
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1 Introduction

As the development of molecular biology and the appli-
cation of some biological technologies, it has become a

1230 in the

hot spot issue in studying different cancers
view of gene, to reveal the mechanism of formation and
development of cancer and look for efficient treat-
ments. The canceration of tissue cells experiences
three stages, initiation, development and diffusion of
cancer cells, each of which involves activation of onco-
genes and inactivation of suppressor genes. Hence,
finding the key genes related with disease characteris-
tics? is of great significance to the diagnosis and cure
of the cancer and drug design. It is an important pro-

41 Now most of

ject in the research of bioinformatics
the methods researching the immanent mechanism of
genome are based on biochemical experiments and only
fit for some specific genes. As the fast accumulation of
cancer genome data, it becomes possible to make mod-
els with a large scale of data. In systems biology, some
efficient methods have been explored, such as integral-
ly studying the changing pattern of genome model in
the experiment of tumor, through analyzing the interac-

151 1o reveal the biological way of

tion network of genes
gene function. These methods have widely promoted
the study of molecular mechanism in a large extent.
For example, as for model organisms yeast, nematode
and fruit fly, computational biologists have used these
methods to make a lot of predictions for the function of
genel’ 4]

Cascading failure of complex network is defined as
one or a few nodes or links failure which will lead other
nodes failure through the coupling relations, and it will
cause the chain effect and lots of nodes failure, ever
the collapse of the whole network, also vividly called
“avalanche”. As human society networking increasing-
ly, people become stricter and stricter with the security
and reliability of complex network. People make a lot
of effort, but still large — scale cascading failures have
occurred from time to time. The reliability of complex
networks has increasingly become an important issue in

. 15-18 19 -20
internet networks' J

, power grid! I and traffic
networks ' "2/, In 2000, R. Cohen et al. '’ studied
the internet networks which follow a scale — free power

— law distribution with respect to random crashes. In

2005, R. Kinney et al. ") modeled the power grid u-
sing its actual topology and plausible assumptions about
the load and overload of transmission substations. In
2007, J. J. Wu et al. "' studied different removal
strategies affect the damage of cascading failures based
on the user — equilibrium assignment, which ensures
the balance of flp on the traffic network. In 2008, A.
G. Smart et al.'®' investigated the relationship be-
tween structure and robustness in the metabolic net-
work of Escherichia coli, Methanosarcina barkeri,
Staphylococcus aureus, and Saccharomyces cerevisiae,
using a cascading failure model based on a topological
flux balance criterion.

In this research, we construct mutual information
networks using gene expression profiles of glioblast and
renal in normal condition and cancer conditions. The
method of cascading failure is firstly applied in gene
networks to explore the relationship of structure and ro-
bustness. The sources of raw gene expression data and
the manipulations of the data are presented in Section
2. Section 3 shows the mutual information gene net-
works constructed from the processed data sets. Section
4 shows the cascading failure model and our main re-
sults. A conclusion and discussion section comes to the

end of the paper with some open problems.

2 Data source and processing

2.1 Data source

The sample data of glioma are chosen from GPL570 in
NCBI. They are all from GSE4290. The group with
cancer called experiment group 1, stages II, III, 1V in-
clude 45, 31, 81 samples respectively. The group
without cancer called control group I has 23 samples.
The sample data of renal cancer are chosen from
GPL570 in NCBI too. The group with cancer called ex-
periment group 1I, stages I, 1I, III include 30, 22, 30
samples, and they are all from GSE2109. The group
without cancer called control group II has 30 samples
which come from GSE11024, GSE12606, GSE3526,
GSE7307, and GSE7392 (http://cise. sdust. edu. cn/
institute/isbbc/ datacascading/datasetl. rar ). Control
group I and control group II are called control group.
Experiment group I and experiment group II are called
experiment group. The detail is shown in Table 1.

Each of these data sets includes p — values and P - M
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— A (P, A and M respectively stand for presence, ab-
sence and margin) for 20 827 genes, corresponding to

54 676 probes.

Table 1 The data source
Data set Sarple size
Control group I GSE4290 23
Stage 11 GSE4290 45
Experiment
Stage 11 1GSE4290 31
group |
Stage 1V GSE4290 81

GSE14, GSEI2606, GSE336,
Control group II 30
GSE7307, GSE7392

Stage 1 GSE2109 30
Experiment
Stage 11 GSE2109 22
group 11
Stage 111 GSE2109 30

2.2  Selection of cancer — related genes

It is too complex to construct and analyze the mutual
information networks for all genes in the data sets. So,
it is necessary to delete a part of genes and reserve the
most important genes. We use Wilcoxon rank sum test
to select genes that have obvious differences between
control group and experiment groups. Taking glioma for
example. Firstly, the control group I and stage II of
experiment group | are used with Wilcoxon rank sum
test, and we obtain a group of genes charged GI_II.
And then the control group 1 and stage III of experi-
ment group I, the control group I and stage IV of ex-
periment group 1 is used with Wilcoxon rank sum test,
and obtain genes set GI_III and GI_IV respectively.
The intersection of GI_II, GI_III and GI_VI, that is
Gl = GI_IINGI_IINGI_IV. The obtained data set
Gl is the working data set. We deal with the renal
cancer data with the same method, and obtain the
working data set G2. Working data set G1 and G2 in-
clude about 91 and 106 genes respectively.

3 Construct mutual information net-

works

To build a network model for a biological system and
make biologically relevant predictions on the function
of the system, it is necessary to identify the system’ s
structure. In this work, we study the structure charac-
teristics of networks consisting of cancer — related

genes. A gene expression profile is a vector whose

components are its expressions in different experi-
ments. For convenience, we denote gene expression
profiles by their corresponding genes. For example,
the mutual information of genesandmeans the mutual
information of their expression profiles. The idea of
mutual information stems from information theory. It
measures dependence degree of two stochastic varia-
bles. Letandbe two genes (regarded as two stochastic
variables) . Their mutual information I(A;B) is given
by I(A;B) =H(A) + H(B) - H(A,B), whereis H
(x) = —x;(p(ac)log2 p(x) is the Shannon entropy of
vector X. H(X,Y) is the joint entropy of genes A and

B. Larger values ofimply closer interrelation between
genes’ expressions. In the case of [ (A;B) =0,
genes’ expressions are irrelevant.

To calculate relevance of mutual information be-
tween genes, we discretize the p — values in each data
set as follows. (1) Select the range [ Min, Max ] for p
— values and divide it into 20 portions such that each
portion contains almost the same number of p — values.
Order the portions in the number order and denote
them by 17, 2
(2) Replace the p — values in an interval by its labe-

, 20th interval, respectively.

ling value. Obviously, the granularity of our discretiza-
tion is finer than that of 0 — 1 discretization. Comparing
with the 0 — 1 discretization, the fine granularity dis-
cretization loses less information contained in the origi-
nal p — values. Therefore, it is reasonable to believe
that the mutual information networks based on our finer
discretization better reflect the nature of the gene regu-
latory system.

In this article, we construct networks of mutual
information using gene expression data in normal tis-
sues and tissues with cancer in every stage. The genes
are treated as the nodes and the links between genes as
the edges in the networks. The link of two genes can
be measured by mutual information value. The greater
the mutual information value between two nodes is, the
closer the link and the lesser the edge — length is; the
lesser the mutual information value is, the more distant
the link and the greater the edge — length is. We trea-
ted the mutual information network as weighted network
(the weighted value is the mutual information value).
The distance between two nodes is negatively related to
the weighted value. So, we translate the mutual infor-

mation network into distance network as follow:
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1 if my 0 Any failure leads to a new redistribution of loads, and,
wy = My as a result, subsequent failures can occur.
© ifm; =0 4.3  The algorithm of cascading failure model

Where m;; is the mutual information of note i,j in mutu-
al information network ,w; is the distance of node i,/ in
distance network. So,let G = (V,E,W) be a complex
gene network with node —set V={1,2,L,N}, edge —

setand weight — set.

4 Cascading failure model

4.1 Betweenness centrality

Betweenness was firstly proposed by Freeman in 1979.
It is a measure of a node’ s centrality in a network e-
qual to the number of shortest paths from all vertices to
all others that pass through that node. The betweenness

centrality of a nodeis given by the expression:

glv) = Y o,(v)/a,

sFEVFEL
where o, total number of shortest paths from node s to

node ¢ and o, (v) is the number of those paths that
pass through v.

Betweenness centrality is a more useful measure of
the load placed on the given node in the network as
well as the node’ s importance to the network than just
connectivity. The betweenness centrality index is a di-
rect measure of message traffic. High betweenness cen-
trality scores indicate that a vertex lies on considerable
fractions of shortest paths connecting others and plays
an important role in the network.

4.2 The cascading failure model

For a given network, suppose that at each time step
one unit of the relevant quantity, the information is ex-
changed between every pair of nodes and transmitted a-
long the shortest path connecting them. The load at a
node is then the total number of shortest paths passing

#-2) The capacity ¢; of a node j is

through the node'
the maximum load that the node can handle. The ca-
pacityof nodeis proportional to its initial loadl;,C; = (1
+a)l;,j=1,2,L,N,where the constant a =0 is the
tolerance parameter, andis the initial number of nodes.
In our research, we define a =0. When all the nodes
are on, the network operates in a free — flow state.
But, the removal of nodes in general changes the dis-
tribution of shortest paths. The load at a particular

node can then change. If it increases and becomes lar-

ger than the capacity, the corresponding node fails.

Based on the above mentioned definitions and symbols,
we present the algorithm of cascading failure model as
follows :

(D Input the weight matrix of complex gene net-
work G=(V,E,W).

@ Calculate initial load Lj(.) of node j and its ca-
pacity C; = (1 +a)L],j=1,2,L,N,i=1,.

) Delete nodeand its incident edges in the net-
work,i=1,2 L N.

@) Calculate the load of every node in the present
network and compare the capacity with the load of ev-
ery node. If the load is lesser than the capacity for ev-
ery node in the present network, then go to (5), other-
wise, delete every node and its incident edges whose
load is greater than its capacity, go to (4).

) If the size — ratio of cascading failure after de-
leting nodeis greater than or equal to the threshold ¢, of
network failure, then the network breaks down.

®i=i+1.1f i <N, then go to 3.

4.4  The judgment of cascading failure

(1) the criteria of a node’ s failure

(1) If the load of a node is greater than its capaci-
ty, then it is called a failure node.

(ii) If a node becomes an isolated node, then it
is called a failure node.

(2) the criteria of a network’s cascading failure

If the size — ratio of cascading failure =1, the net-
work has cascading failure, where ¢ is the threshold of
network failure, and it is a criterion of network failure.
In our research, we define ¢, =0.5.

4.5 Some important parameters

(1) After deleting node i, and causing s; failure
nodes (including node) , then s, is defined as the size
of cascading failure of node i and d; =s,/N as the size
—ratio of cascading failure.

,d.=

t
(2) Let signl (i) = { Cf,then the percent-
,d; <t
N
age of failure nodes of the network p = Z,l signl (i)/
(N).

(3) The average size — ratio of cascading failure

d
R=3d/N.
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1,d,=d
(4) Let sign2(i) = {O (d is a variable pa-

rameter). Then the cumulative probability of size — ra-
tio of cascading failure P(d =d) = l_ésignZ (i)/N,
which indicates the probability of size — ratio d; of cas-
cading failure greater than d.

Obviously,P,R and P(d =d) are the important
parameters measuring the cascading failure scale and
the robustness or fragility of network.

In order to highlight the structural characteristics
of the networks so that valuable biological conclusions
can be drawn, it is necessary to choose a threshold val-
ue to carry out coarse graining on normalized mutual
information. Here, we choose eighteen thresholds that
are [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0. 35,
0.4,0.45,0.5,0.55,0.6,0.65,0.7, 0.8, 0.9,
0.99] and then obtain eighteen networks correspond to
the cases of the normal state and experiment group of
every state respectively. The percentage of failure
nodes of the network P is plotted versus the threshold
values used to construct mutual information networks T
in Fig. 1A (glioma) and Fig. 1B (renal cancer). The
average size — ratio of cascading failureis plotted versus
the threshold values used to construct mutual informa-

tion networksin Fig. 2A (glioma) and Fig. 2B (renal
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cancer). In Fig. 1 and Fig. 2, the control group (red
curve) is on the top of every stage of experiment group
(black, blue and green curves) in all values of thresh-
old. The cumulative probability of size — ratio of casca-
ding failure P(d =d) is plotted versus the size of cas-
cading failure of node d in Fig. 3 and Fig. 4 (renal
cancer). In Fig. 3, by comparing the networks corre-
sponding to control group I and the stages of experi-
ment group I, one can see that the networks of control
group | can be distinguished from the experimental
group I clearly in a broad range of the threshold varia-
tion that is [0,0.65]. In Fig. 4, the networks for con-
trol group II can be distinguished from the experimental
group II clearly in a broad range of the threshold varia-
tion that is [0, 0.55]. In addition, the red curve is
on the top of the other three color curves. The distinc-
tion shows that the differences in the cumulative proba-
bility of size — ratio of cascading failure P(d =d) for
control group and different stages of experiment group
are pretty clear. So, we can see from Fig. 1, 2, 3 and
4, the network of control group trends to fail more easi-
ly than networks of different disease stages. P,R,and
P(d =d) can measure the robustness of the networks,
and they are positively correlated with the robustness of

the networks.

120
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100} | ——m
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01 02 03 04 05 06 0.708 09 1
T
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Fig. 1 Plots of the percentage of failure nodes of the network P versus threshold values used to construct mutual information networks.

The red, black, blue, and green curves correspond to the cases of the normal state, stage II, stage III, stage IV respectively.



4 #H £ & % %114

| | | ! ! ! | 1 ! 0.1= o | 1 | ! 1 ! | |
00 0.1 02 03 04 05 06 0708 09 1 0 01 02 03 04 05 06 0708 09 1
T T
2A(glioma) 2B(renal cancer)

Fig.2 Plots of the average size — ratio of cascading failure R versus threshold values used to construct mutual information networks.

red, black, blue, and green curves correspond to the cases of the normal state, stage II, stage III, stage IV respectively.
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Fig.3 Damage distributions for cascading events in glioma networks. Plots of the cumulative probability of size — ratio
of cascading failure P(d =d) versus the size of cascading failure of node d in eighteen threshold values. The red, black, blue,

and green curves correspond to the cases of the normal state, stage II, stage III, stage IV respectively.
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Fig.4 Damage distributions for cascading events in renal cancer networks. Plots of the cumulative probability of size — ratio of
cascading failure P(d =d) versus the size of cascading failure of node d in eighteen threshold values. The red, black, blue,

and green curves correspond to the cases of the normal state, stage I, stage II, stage III respectively.
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4.6 The selection of the structural key genes

In the control network and experimental networks, the
size of cascading failure of some genes are quite differ-
ent, and these genes are called structural key genes
(SKGs). The situation is very complex, for example
gene AMH in Table 2, the values of the size of casca-
ding failure are very great in all networks. Gene MELK
in Table 2, the values of the size of cascading failure
are very great in all networks except control group and
there are some other genes which have the same char-
acteristic. Table 2 and Table 3 list some representative
genes which have big difference in the size of cascading
failure in different networks of corresponding to glioma
and renal cancer. (http://cise. sdust. edu. cn/institu-
te/isbbc/data/ cuscading/dataset2. rar) Table 4 and
Table 5 list all the type of SKGs and all genes of every
type. For example, T_II_III in Table 4 means the
genes of this type’ s size of cascading failure are very
great in networks of state Il and state III of experiment

group I and little in other networks.

Table 2 List representative genes of glioma which have big

difference in the size of cascading failure in different networks

State T MELK AMH BATI 1D3
N 0.05 0.05 0.60 0.60 0.60
0.30 0.19 0.88 0.76 0.80

0.60 0.57 0.88 0.86 0.80

0.90 0.98 0.98 0.98 0.98

I 0.05 0.47 0.47 0.02 0.02
0.30 0.57 0.66 0.09 0.10

0.60 0.57 0.82 0.38 0.40

0.90 0.87 0.88 0.87 0.87

| 0.05 0.59 0.58 0.05 0.05
0.30 0.71 0.71 0.21 0.22

0.60 0.88 0.85 0.47 0.47

0.90 0.93 0.92 0.91 0.91

v 0.05 0.42 0.43 0.02 0.45
0.30 0.67 0.67 0.12 0.45

0.60 0.87 0.87 0.45 0.45

0.90 0.92 0.92 0.91 0.91

Table 3  List representative genes of renal cancer which have big

difference in the size of cascading failure in different networks

State T AFM TREH MELK
N 0.05 0.62 0.62 0.08
0.30 0.62 0.78 0.25

0.60 0.63 0.84 0.64

0.90 0.97 0.97 0.97

I 0.05 0.50 0.07 0.55
0.30 0.63 0.16 0.55

0.60 0.72 0.38 0.55

0.90 0.93 0.93 0.93

I 0.05 0.07 0.07 0.57
0.30 0.13 0.13 0.64

0.60 0.49 0.48 0.64

0.90 0.91 0.91 0.91

I 0.05 0.55 0.05 0.55
0.30 0.58 0.13 0.74

0.60 0.58 0.42 0.84

0.90 0.93 0.93 0.94

Table 4  List SKGs of glioma

Type Genes

T_IT_II ADAMTS6, KIF4A, NDC80

T_C_I_II_IV AMH

T_II ANKFN1, CAMK2B, EZH2, SLC30A3, TS-
PANI1

T_IT_IV ANKRD43, SST, SYNGR3

TG APOC1, BATI, BCL6, DPYSL3, EIF2CI,

B FCHO1, FLJ37464, IFI16, ILF3, IRX3,
MTHFD2, NBN, NRXN3, PPFIAI,
PPPIRI6B, PRRX1, SGEF, SMARCCI,
UHRFI1

T_C_IV ATP8A2, EIF4EBP1, ID3, MAMIL2, POP-
DC3

T_IV Cl40rf94 , DHRSX

T_C_I_IV Cl60rf48

T_II CCDC80

T_I_IV HS3ST4, KIAA1045

T_I_II_IV CRHBP, KIRREL3, LGI3, MELK
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Table 5 List SKGs of renal cancer

Type Genes

T_C_I_III AFM

ALDOB, NFKBI , SLC12A3, SLC22A8,
T_C SLC22A7, TREH, RGL3, Cl2orf44, SLCI3A3,
Cl8orf45, TTC36, LOC283027vLOC727770

T_I_I_IIT CENPE, TYRP1, MELK, PVRL3, Cl2o0rf59

T_C_II ICOLAAL, ELF5

_— CYP17A1, MT1H, NEK2, SERPINAS, SPAG4,
B ENPP6vC7orf41

T_I_III DACHI

T_1 GPC5, TCEAL2, LOC100130278

T_II TXNDC3, MGC12488, GGT6, FAMIS1A

T_II_II MIOX, TUBB2B

T_I_II ACSF2

T_C_1_II IYD

In Table 4, genes in T_II_IIT, T_II, T_III_IV, T
IV, T_II, T_I_IV, T_I_IV, the size — ratio of
cascading failure is great in some experiment group I
networks, and very little in control group I. And these
genes have great degree and betweenness centrality.
That is to say, they are very active in cancer cells but
relatively silent in normal cells, and deleting them will
cause the collapse of the whole diseased networks.
Hence, they are probably glioma oncogenes genes.
Genes in T_C are very active in normal cells but rela-
tively silent in cancer cells and, hence, they are prob-
ably glioma suppressor genes. Genes in T_C_II_III_IV
are the key nodes in both control group I and every
states of experiment group I. They are very important
during the whole life, not only the normal cells but also
the cancer cells. So, we infer these genes are house-
keeping genes. Housekeeping genes are constitutively
expressed in all tissues to maintain cellular functions.
They are presumed to produce the minimally essential
transcripts necessary for normal cellular physiology.
Genes in T_C_IV, T_C_II_IV, they are the key
nodes of control group I, but are not the key nodes in
all states of experiment group I, and we have not a
clear classification. We can through consulting related
data to conform the mechanism in normal and cancer
cells. The similar with the Table 4, in Table 5, genes
in T_I_II_II. T_II, T_I_II0, T_I, T_I, T_II_II, T
_I_IT are probably renal oncogenes genes. Genes in T_

C are probably renal suplpressor genes. Genes in T_C_

I_III, T _C_III, T_C_I_II need further confirmation.

5 Conclusions and Discussions

In these research, we construct mutual information net-
works using gene expression profiles of glioblast and re-
nal in normal condition and cancer conditions. Trans-
late the mutual information networks into load weighted
networks. Investigate the relationship between structure
and robustness in the gene networks of the two tissues
using a cascading failure model based on betweenness
centrality. Calculate the percentage of failure nodes of
the network P, the average size — ratio of cascading
failure R, and the cumulative probability of size — ratio
of cascading failure P(d =d) for the networks corre-
sponding to the control group and experiment groups.
As for the percentage of failure nodes of the network P
and the average size —ratio of cascading failure R, the
value of P and R increase with the threshold of the net-
work increasing. On the other hand, they can distin-
guish the control group network and experiment group
networks in all the threshold value. And the value of P
and R of control group network is great than that of ex-
periment group networks. As for the cumulative proba-
bility of size — ratio of cascading failure P(d =d), the
network for control group can be distinguished from the
experimental group clearly in a broad range of the
threshold variation. And the value of P(d=d) of con-
trol group network is great than that of experiment
group networks. Both the percentage of failure nodes of
the network P, the average size — ratio of cascading
failure R and the cumulative probability of size — ratio
of cascading failureP(d =d) can measure the robust-
ness of the networks, and the value is positively corre-
lated with the robustness of the networks. In terms of
structure,, the network of control group trends to fail
more easily than networks of different disease stages.
So we infer the networks of different disease stages are
more robust than that of control group to some extent.
In 2004, Kitano H et al. "*’! presented a perspective on
cancer as a robust system to provide a framework from
which the complexity of tumors can be approached to
yield novel therapies. The reason why many approa-
ches to anticancer treatment had been limited success
With the

growth of threshold, there are some isolated nodes,

was because the tumor was ° robustness’.



%14

WAT % £ & M % a4k 3 AU e o A7 9

and links among are no so connected. It is obvious that
the scale of cascading failure is more and more great.
And the networks are not so robust.

According to the differences of the size of casca-
ding failure of some genes in the control network and
experimental networks, we get some SKGs. And we
group them into different types. In Table 5, we infer
genes in T_C are suppressor genes of glioma, genes in
T_I_II, T_I, T_II_IV, T_IV, T_II and T_II_IV
are oncogenes of glioma. Overexpression of the poly-
comb group protein enhancer of zeste homologue 2
(EZH2) occurs in diverse malignancies, including

(28300 1y s

prostate cancer, breast cancer, and glioma
believed to play a crucial role in tissue — specific stem
cell maintenance and tumor development. EZH2 is
strongly expressed in glioma samples and its pharmaco-
logic inhibition impairs glioma cells self — renewal in

In Table

5, most of the genes have not been proved to have di-

vitro and delays tumor initiation in vivo

rect relationship with glioma, but some of them have
significant relationship with other cancers. In 2006,
Riemann K et al. "' research the association of the
NFKBI1 insertion/deletion promoter polymorphism with
survival in colorectal and renal cell carcinoma as well
as disease progression in B — cell chronic lymphocytic
leukemia, and proved that the NFKB1 promoter poly-
morphism has no effect on risk and course of disease in
the three cancer entities that were analyzed. In 2010,
Okamoto K et al. "' identified GPC5 as a new suscep-
tibility gene for nephrotic syndrome and implicated
GPC5 as a promising therapeutic target for reducing
podocyte vulnerability in glomerular disease. This re-
search provides a large amount of SKGs, which are key
roles in normal tissues and cancer tissues of glioblast
and renal. However, this study provides little informa-
tion about the detailed roles of identified cancer genes.
Most of the genes have not been studied the relation-
ship with glioma and renal cancer. The results can pre-
dict more detailed and interpretable roles of oncogenes
and other cancer candidate genes in glioma and renal

cancer.
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