DOI:10.12113/202106006

网络首发地址:http://kns.cnki.net/kcms/detail/23.1513.Q.20220907.1315.004.html

谷子 MADS-box 基因家族的鉴定和表达分析

王育选¹,张梦超¹,常丽君¹,张艾英²,张 莉^{1*},郭世华³

(1.山西农业大学 农学院,山西 太谷 030801; 2.山西省农业科学院 谷子研究所,山西 长治 046011;3.内蒙古农业大学 农学院,呼和浩特 010019)

摘 要:MADS-box 基因是真核生物中一类重要的转录因子,参与调控多项植物的生长发育过程。然而关于谷子穗发育的 MADS-box 基因研究比较少。本研究使用序列相似性检索,在 Phytozome 13.0 数据库中筛选并且鉴定出了 68 个谷子 MADS 家 族成员,并对这些家族成员的物理化学性质、系统发育树、染色体定位、表达谱等进行了全面的分析。结果表明,谷子 MADS 家族成员在染色体上分布不均匀,可以分为 5 个亚族。通过组织特异性表达谱分析得到,多数 MADS 基因在穗中表达量要高 于其他器官。此外利用转录组测序技术对发育初期的谷穗和成熟期的谷穗进行了转录组测序分析,筛选到数个与谷穗分生 组织发育相关 MADS-box 基因。为进一步揭示 MADS-box 基因在谷子穗发育过程中的作用奠定了重要的基础。

关键词:谷子;MADS-box;表达谱;花序发育

中图分类号:Q311 文献标志码:A 文章编号:1672-5565(2023)01-051-09

Genome-wide identification and expression analysis of MADS-box genes in foxtail millet

WANG Yuxuan¹, ZHANG Mengchao¹, CHANG Lijun¹, ZHANG Aiying², ZHANG Li¹ *, GUO Shihua³

(1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China;

2. Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi 046011, Shanxi, China;

3. College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China)

Abstract: MADS-box gene is an important transcription factor in eukaryote, which is involved in regulating a number of plant growth and development processes. While there are few studies on MADS-box genes of foxtail millet during panicle development. In this study, a genome-wide searching of foxtail millet MADS-box genes was performed in Phytozome 13.0 using sequence similarity search, and 68 foxtail millet MADS-box genes were screened and identified. The physical chemical property, phylogenetic tree, chromosome location, and expression profile of these family members were analyzed. Results showed that the members of the SiMADS family were divided into five subfamilies and unevenly distributed on chromosomes. According to tissue-specific expression patterns, the expression of most SiMADS genes in spike was higher than that in other tissues. Additionally, transcriptome analysis of spike in early stage and mature stage was conducted, and several spike differentiation related SiMADS genes were detected. The study provides important foundation for further revealing the function of MADS-box genes during foxtail millet inflorescence development.

Keywords: Foxtail millet; MADS-box; Expression profile; Inflorescence development

MADS-box 基因是真核生物中一类重要的转录 box 的 名 称 来 自 于 酵 母 Mini Chromosome 因子,在动物、植物和真菌中都有报道^[1]。MADS- Maintenance 1(MCM1)、拟南芥 Agamous (AG)、金

收稿日期:2021-06-08;修回日期:2021-12-27;网络首发日期:2022-09-07.

基金项目:国家自然科学基金(No.31860409,32060509);山西农业大学省部共建有机旱作农业国家重点实验室自主研发项目(No. 202105D121008-2-5);国家重点研发项目(No.2020YFD1000803-2);山西省重点研发计划项目(No.201803D221019-1);山西省应 用基础研究计划项目(No.201901D111221);山西农业大学生物育种工程项目(No.YZGC029).

作者简介:王育选,男,硕士,讲师,研究方向:植物分子生物学. E-mail:13643515189@163.com.

^{*}通信作者:张莉,副教授,硕士生导师,研究方向:植物分子生物学. E-mail:zhangli7912@163.com.

鱼草 Deficiens (DEF)和人类的 Serum Response Factor (SRF)4种蛋白的首字母,这4种蛋白质结 构里都有一个由大约60个氨基酸组成的高度保守 的 MADS 盒,编码含有这种蛋白因子的基因称 MADS-box转录因子^[2]。MADS-box 基因根据结构 域的类型,可分为两个谱系,I型和II型。I型 MADS 基因只含有保守的 MADS 结构域,并且在转 录水平上丰度很低。II型 MADS 基因又称为 MIKC 型基因,通常含有4个结构域,分别为:高度保守的 MADS-box(M)、中度保守的 Kertain-like domain (K)、较为保守的 Intervening domain (I) 和多变的 C-terminal domain (C),植物中大多数功能已知的 MADS-box 基因都属于 type II 型^[3-4]。

MADS-box 基因在植物生长发育过程中起重要 的调控作用,已经在拟南芥、水稻、小麦、番茄、梨、菠 萝等植物中进行了深入的研究[5-13]。例如拟南芥 的花形成的 ABCDE 模型中的 MADS-box 基因起着 重要作用^[14]。水稻的 MADS-box 基 因 SUPPRESSOR OF**OVEREXPRESSION** OFCONSTANS 1 (SOC1), SHORT VEGETATIVE PHASE (SVP), AGAMOUS-LIKE 24 (AGL24) 和 SEPALLATA 4 (SEP4) 基因共同调控水稻花序的枝梗分生组织 的分化^[15],而另一个水稻 MADS-box 基因 Panicle phytomer 2(PAP2)基因正向调节小穗分生组织的形 成^[16]。另外拟南芥 AGAMOUS-LIKE 67(AGL67)参 与调控种子的萌发过程^[17]。同时一些 MADS 转录 因子参与植物逆境胁迫应答反应[18-19]。

谷子(Setaria italica (L.) Beauv.) 是禾本科植 物,一年生,具有适应性广、抗逆性强,产量稳定、粮 草兼用等特点,且谷子全身是宝,各有用途,它的蛋 白质和矿物质含量也非常高,不仅解决了人类营养 饮食问题,还促进了饲牧业的发展,所以深受中国人 民喜爱^[20]。然而谷子平均产量比较低,一般谷子 的亩产量在 0.6~0.8 kg。当前如何提高谷子产量 是育种工作者的重要任务。谷子的枝梗数和穗码 数量与谷子的产量密切相关。因此研究调控与谷 穗分生组织发育相关 MADS-box 基因的功能对于 提高谷子产量有重要的意义。本研究利用生物信 息学分析方法,对谷子 MADS-box 家族进行全面而 系统分析,得到较为完整的谷子 MADS 基因家族 信息。同时利用转录组测序技术对发育初期的谷 穗和成熟期的谷穗进行了转录组测序分析。通过 差异表达基因分析,筛选了数个与谷穗分生组织 发育相关 MADS-box 基因。本研究为进一步揭示 MADS-box 基因在谷子穗发育过程中的作用奠定 了重要的基础。

1 材料与方法

1.1 谷子 SiMADS 家族成员的鉴定

首先在 TAIR 数据库(https://www.arabidopsis. org/index.jsp)下载 107 条拟南芥 AtMADS 转录因子 蛋白序列^[18],然后在 Phytozome 13.0 数据库 (https://phytozome-next.jgi.doe.gov)的谷子全基因 组数据库中进行序列检索,在 E 值<1.0,得到全部 的谷子 SiMADS 转录因子。为确保所获取的谷子 SiMADS 转录因子序列的可靠性和有效性,通过在 线 SMART 数据库(http://smart.embl-heidelberg.de) 对上述蛋白序列的结构域进行鉴定和冗余性分析, 确定所得到的 SiMADS 转录因子蛋白序列都含有真 实的 MADS 保守结构域,最终鉴定出 68 条谷子的 SiMADS 转录因子,根据它们在染色体上的位置顺 序,分别将它们命名为 SiMADS1~SiMADS68。

1.2 谷子 SiMADS 蛋白的理化性质分析

利用在线软件 ExPASy 中的 Protparam 软件 (https://web. expasy. org/protparam)分析谷子 SiMADS 蛋白质的相对分子量、理论等电点、稳定性 等进行分析。

1.3 谷子 SiMADS 基因的染色体定位分析

应用 Mapinspect 软件把获得的谷子 SiMADS 基因在染色体上的物理位置绘制成染色体的物理 图谱。

1.4 谷子 SiMADS 蛋白系统进化树的构建

利用 MEGA7.0 软件中的 Clustal W 对 68 条谷 子 SiMADS 氨基酸序列和拟南芥的 7 条 AtMADS 氨 基酸序列进行多序列比对,然后采用 N-J 邻接法构 建系统发育进化树。

1.5 谷子 SiMADS 基因家族表达谱分析

从 NCBI 的 SRA 下载谷子根、茎、叶、穗的转录 组数据。利用 Fastqc 软件对数据进行筛选,选择 Q20 以上的 reads,利用 Galaxy 数据分析平台与青狗 尾草基因组序列进行比对,表达量的单位用 RPKM 值衡量,归一化处理后的数据用 log2 作为基因表达 的数据,用 HemI 软件生成热图。

1.6 谷子穗发育转录组分析

本试验的谷子品种"晋谷 21"种植于山西农业 大学谷子研究所试验田。采集谷子的幼嫩的谷穗 (开花后 1 d)和成熟的谷穗(开花后 30 d),立即液 氮处理,用干冰寄给北京诺禾致源科技股份有限公 司,进行 RNA 的提取和转录组测序。样品 RNA 检 测合格后,进行建库并运用 illumina 测序平台进行 转录组测序。获得测序数据后,进行基因表达量分 析。使用诺禾致源售后平台工具 NovoMagic 对差异 基因的进行分析 (https://magic.novogene.com/ public/customer/main#/home)。

1.7 谷子 SiMADS 基因的荧光定量 PCR 表达分析 采集晋谷 21 植株的叶片、根、幼嫩的谷穗和成 熟期的谷穗,立即液氮处理,-80 ℃保存。采用 TRIzol 法标准流程提取样品总 RNA。反转录合成 cDNA,然后进行荧光定量 PCR 反应,具体步骤参照 试剂盒说明(Takara, RR047A)。采用 GenScript Realtime PCR 引物设计工具(https://www.genscript.com/ ssl-bin/app/primer)设计 *SiMADS* 的引物(见表 1)。 采用 ABI7500 荧光定量 PCR 仪(Applied Biosystems, USA)进行 PCR 反应,热循环程序如下:1 个循环 (95 \mbox{C} ,30 s);40 个循环(95 \mbox{C} ,15 s,57 \mbox{C} ,30 s, 72 \mbox{C} ,30 s)。内参用谷子的 18S RNA。实验进行了三 次技术重复。实验结果用基因的相对表达量计算,计 算公式:2- $\Delta\Delta$ ct, $\Delta\Delta$ ct=(Ct 目的基因-Ct 内参)-(Ct 目的基因-Ct 内参)。

	表 1 SiMADS 基因灾光定量 PCR 引物序列
Table 1	Primers sequences of qRT-PCR analysis of SiMADS gene

_....

基因编号	Phytozome 数据库编号	正向引物	反向引物	
SiMADS27	Seita.4G093200	TCTCTGTCCTCTGCGACATC	TGAGTTGCGTGAGCATCTTG	
SiMADS41	Seita.5G160200	GAGAGCTACCACCTGCTGAT	CACATCATGGGCAGATTGGG	
SiMADS44	Seita.5G303200	CCTGCTGCTTCTCCTCTTCT	ACATCTGCTCCACCTTCTCC	
SiMADS52	Seita.6G223400	GTCGCGCTCATCATCTTCTC	ACACGTGCCTTCAGTTTGAG	
SiMADS62	Seita.9G088700	GGGTGAAGATCTGGCTCCAC	AGGACCCTGTTGGCATCTTG	
18S RNA	Seita.1G066700	AACTGGGTTGATGAAGGTATGG	ACCTCCCACCAGCAGAACC	

2 结果分析

2.1 谷子 MADS-box 家族成员的鉴定及理化性质 分析

本研究使用序列相似性检索,在 Phytozome 13.0 数据库中筛选并且鉴定出了 68 个谷子 MADS 家族成

员,总共鉴定出 68 个 SiMADS 转录因子,SiMADS 序列 的平均长度为251.6 aa,其中氨基酸序列最长的是 SiMADS17,为477 aa,而 SiMADS68 最短,只有61 aa。68 个 SiMADS 经过 SMART 数据库检测,都含有真实的 MADS 保守结构域。此外利用在线软件 Protparam 对 68 条谷子 SiMADS 蛋白质的相对分子量、理论等电点 (PI)、稳定性等进行分析,结果(见表 2)。

表 2 谷子 SiMADS 蛋白理化性质

Table 2 Physical and chemical properties of foxtail millet SiMADS pro

蛋白编号	Phytozome 数据编号	分组	氨基酸	PI	分子量
SiMADS1	Seita.1G003500	MIKC	474	8.73	53 182.37
SiMADS2	Seita.1G072200	Μδ	249	6.14	28 106.88
SiMADS3	Seita.1G077600	Μα	321	5.94	34 216.87
SiMADS4	Seita.1G148200	Μα	146	4.76	16 054.06
SiMADS5	Seita.1G183300	Mγ	258	7.72	27 475.54
SiMADS6	Seita.1G209300	MIKC	240	8.85	27 452.00
SiMADS7	Seita.1G272300	Μα	230	8.68	24 236.49
SiMADS8	Seita.1G273400	MIKC	253	8.85	28 806.78
SiMADS9	Seita.1G308200	MIKC	242	9.27	27 639.54
SiMADS10	Seita.1G328500	MIKC	228	5.41	25 442.51
SiMADS11	Seita.2G002300	MIKC	269	9.31	30 852.02
SiMADS12	Seita.2G026600	Μα	393	5.76	43 487.49
SiMADS13	Seita.2G086800	Μα	246	5.64	26 810.52
SiMADS14	Seita.2G115700	Μα	110	4.79	11 964.40
SiMADS15	Seita.2G266600	MIKC	242	9.17	27 794.57
SiMADS16	Seita.2G383000	MIKC	252	9.11	28 527.33

学

第21卷

					续表(2)	
蛋白编号	Phytozome 数据编号	分组	氨基酸	PI	分子量	
SiMADS17	Seita.3G055200	Мβ	477	4.41	51 327.14	
SiMADS18	Seita.3G073000	MIKC	288	9.23	32 592.63	
SiMADS19	Seita.3G098400	MIKC	264	9.10	29 848.13	
SiMADS20	Seita.3G098800	Μδ	215	9.34	24 664.20	
SiMADS21	Seita.3G236800	Μδ	215	8.45	25 105.48	
SiMADS22	Seita.3G280400	Μα	195	10.25	21 217.40	
SiMADS23	Seita.3G301600	Μα	156	5.44	17 254.42	
SiMADS24	Seita.3G358100	MIKC	244	7.07	27 417.12	
SiMADS25	Seita.4G062600	MIKC	227	7.59	26 223.74	
SiMADS26	Seita.4G077200	MIKC	222	5.36	24 402.38	
SiMADS27	Seita.4G093200	Μδ	396	4.99	43 215.02	
SiMADS28	Seita.4G160200	Mα	232	10.27	25 941.94	
SiMADS29	Seita.4G163500	Mα	214	9.59	23 203.68	
SiMADS30	Seita.4G177800	Mα	183	7.91	20 081.07	
SiMADS31	Seita.4G184600	Mα	169	5.44	18 547.95	
SiMADS32	Seita.4G219100	Mα	155	5.11	17 109.35	
SiMADS33	Seita.4G238000	Μα	319	5.62	34 272.64	
SiMADS34	Seita.4G268200	Μδ	238	4.97	26 536.93	
SiMADS35	Seita.4G277600	MIKC	229	8.74	26 105.50	
SiMADS36	Seita.5G033100	Mγ	250	9.61	27 797.64	
SiMADS37	Seita.5G036500	MIKC	229	7.73	25 991.50	
SiMADS38	Seita.5G101300	MIKC	168	8.90	18 664.72	
SiMADS39	Seita.5G114500	$M\gamma$	249	8.59	27 843.67	
SiMADS40	Seita.5G143100	MIKC	257	9.07	29 070.89	
SiMADS41	Seita.5G160200	Мβ	448	5.25	46 645.87	
SiMADS42	Seita.5G220600	Μα	183	5.03	20 801.27	
SiMADS43	Seita.5G225300	Μα	419	5.89	46 714.93	
SiMADS44	Seita.5G303200	Μδ	196	6.55	22 681.84	
SiMADS45	Seita.5G404600	Μδ	209	7.10	24 211.72	
SiMADS46	Seita.5G406700	MIKC	269	9.11	29 894.79	
SiMADS47	Seita.5G425300	Мβ	462	5.11	49 402.20	
SiMADS48	Seita.5G432700	MIKC	279	10.58	29 463.69	
SiMADS49	Seita.6G013400	Μδ	225	6.61	25 386.28	
SiMADS50	Seita.6G156800	MIKC	233	8.89	26 756.10	
SiMADS51	Seita.6G194800	Μδ	344	4.58	37 434.77	
SiMADS52	Seita.6G223400	MIKC	245	8.75	28 424.34	
SiMADS53	Seita.6G223600	MIKC	175	8.97	19 878.67	
SiMADS54	Seita.6G223700	MIKC	123	10.13	14 218.33	
SiMADS55	Seita.7G109700	Μδ	202	7.06	23 293.71	
SiMADS56	Seita.7G110000	Μδ	109	9.94	12 489.72	
SiMADS57	Seita.7G125400	MIKC	238	7.72	27 182.97	
SiMADS58	Seita.7G210200	MIKC	254	8.59	28 483.13	
SiMADS59	Seita.7G235900	Мδ	245	9.27	28 009.05	

					续表(2)
蛋白编号	Phytozome 数据库编号	分组	氨基酸	PI	分子量
SiMADS60	Seita.8G182900	Mγ	208	6.21	22 047.11
SiMADS61	Seita.8G220800	Μδ	369	6.20	40 939.99
SiMADS62	Seita.9G088700	MIKC	246	6.45	27 878.75
SiMADS63	Seita.9G088900	MIKC	249	9.33	28 473.64
SiMADS64	Seita.9G270800	Mγ	409	5.18	43 788.65
SiMADS65	Seita.9G342700	MIKC	225	9.60	25 623.42
SiMADS66	Seita.9G393900	Μα	238	5.60	26 569.08
SiMADS67	Seita.9G513900	MIKC	228	8.47	25 626.13
SiMADS68	Seita.9G561000	MIKC	61	10.65	6 973.20

2.2 谷子 SiMADS 基因的染色体定位分析

为了获得 SiMADS 家族所有基因在染色体上的物理位置,首先在 Phytozome13.0 数据库获得这些基因的物理位置,然后使用 Mapinspect 软件绘制了染

色体的物理图谱(见图 1)。在染色体之间, SiMADS 基因的分布不平衡。5 号染色体上的基因数量最多, 为 13 个,占总数的 19%。8 号染色体上的 SiMADS 基因数量为 2,约占总数的 3%,是最少的。

图 1 谷子 SiMADS 基因的染色体分布

2.3 谷子 SiMADS 成员的序列比对与系统发育 分析

参考拟南芥的 MADS 家族基因的分类情况,对 谷子 SiMADS 成员之间的进化关系进行研究。根据 拟南芥的系统发育关系,I型 MADS 蛋白质可进一 步分为 Mα、Mβ 和 Mγ 三个亚组,II型 MADS 蛋白 质则含有 Mδ 和 MIKC 两个亚组。挑选拟南芥的 MIKC (At2g03710、At2g45650、At3g54340), Mα (At5g27130), Mβ(At5g41200), Mγ(At1g65300)和 Mδ(At1g18750)氨基酸序列作为参考序列,构建谷 子 SiMADS 家族的系统发育树(见图 2)。17 个 SiMADS 被归为 Mα,3 个被归为 Mβ,5 个被归为 Mγ。13 个 Mδ 和 30 个 MIKC 组成了 SiMADS II 型 蛋白。

2.4 谷子 SiMADS 基因的表达谱分析

在 SRA 库中下载谷子的根、茎、叶和穗转录组 数据集,用热图的形式来显示各个基因的表达情况, 对谷子 MADS 基因家族所有成员的组织特异性表 达情况进行分析(见图 3)。基因的表达量越大,其 颜色就越深。其中 13 个 *SiMADS* 基因没有检测到 基因表达。这 13 个基因中除了 *SiMADS*15 属于 MIKC 亚组以外,其他都属于 I 型 MADS。*SiMADS* 家族基因表达的组织特异性较强。大部分基因在花 器官中都有比较高的表达量。4 个 *SiMADS* 基因 (*SiMADS*29、41、49 和 *SiMADS*50)在根中的表达量 高于其他器官。*SiMADS*53 在叶中的表达量显著高 于其他器官高,*SiMADS*54 和 *SiMADS*63 在茎中的表 达量比其他器官高。

图 2 谷子 SiMADS 的系统进化树及分类

Fig. 2 Phylogenetic relationships of foxtail millet SiMADS proteins

图 3 谷子 SiMADS 基因的组织特异性表达 Fig.3 Tissue-specific expression pattern of foxtail millet SiMADS genes

2.5 谷子穗发育的转录组测序分析

为了研究调控谷子穗发育相关的基因,对幼嫩的谷穗(幼穗)和成熟期的谷穗(成熟穗)进行了转录组测序分析。根据基因在不同样品中的表达水平(FPKM值),识别差异表达基因,并使用诺禾致源售后平台工具 NovoMagic 对差异基因的进行分析,绘

制 热 图 (https://magic.novogene.com/public/ customer/main#/home)。结果发现:有 30 个 MADS 基因在谷子幼穗和成熟穗中表达,其中 4 个基因在 幼穗中有较高表达量,6 个基因在成熟穗中有较高表 达量,其余基因的表达量在幼穗和成熟穗中差异不 大(见图 4)。

注:红色代表表达量上调,蓝色代表表达量下调.

2.6 谷子 SiMADS 基因的时空表达

为了验证转录组数据的可靠性,随机选取5个 基因,包括 SiMADS27、SiMADS41、SiMADS44、 SiMADS52和SiMADS62,利用荧光定量PCR,对这些 在谷子根、叶、幼穗和成熟谷穗中表达情况进行分析。结果发现5个基因在幼穗和成熟穗中的表达量 都高于在根和叶中的表达量,其中SiMADS44和 SiMADS62在谷子幼穗的表达量高于成熟穗,而 SiMADS41和SiMADS52在幼穗和成熟穗中的表达量 没有明显差异(见图5)。该结果与转录组测序结果 一致,证明了转录组测序数据的可靠性。

3 讨 论

MADS-box 基因参与调控多项植物生长发育过程,到 目前为止已经在多种植物进行了鉴定^[5-13],其中在 拟南芥、水稻、二穗短柄草中分别鉴定了 107、75 和 57 个基因^[5-7]。本研究利用序列相似性检索 (BLAST),对谷子基因组进行全面检索,鉴定出了 68 个*SiMADS*基因。尽管谷子的基因组(515 Mb)大 于拟南芥的基因组(123 Mb),谷子 MADS-box 基因 总数(68)小于拟南芥(107)。同样水稻和二穗短柄 草的基因组(466 Mb 和 260 Mb)分别都大于拟南芥 的基因组(123 Mb),而水稻和二穗短柄草的 MADSbox 基因数(75 和 57)都小于拟南芥(107)。研究发 现拟南芥拟南芥 I型 MADS-box 基因存在大量基因 复制^[5],可能导致了拟南芥 I型 MADS-box 基因的 总数(61)大于谷子和水稻 I型 MADS-box 基因数量 (25 和 32)。

谷子全身是宝,各有用途,它的蛋白质和矿物质 含量也非常高,不仅解决了人类营养饮食问题,还促 进了饲牧业的发展,所以深受中国人民喜爱^[21]。然 而在优质小米受到市场追捧,价格一路攀升的市场 背景下,谷子生产情况却不尽人意呢?其中一个主 要原因就是谷子平均产量比较低,一般谷子的亩产 量在 0.6~0.8 kg。当前如何提高谷子产量是育种工 作者的重要任务。谷子的花序总体上像是圆锥状, 谷子穗子的性状从下往上分为主轴、分枝、小穗和 花,并且谷子的穗轴上有枝梗,枝梗分为三个等级, 小穗主要长在第三级枝梗上,俗称穗码^[24]。谷子的 枝梗数和穗码数量与谷子的产量密切相关。因此研 究调控与谷子穗发育相关 MADS-box 基因的功能对 于提高谷子产量有重要的意义。为了研究调控谷子 穗发育相关的基因,对发育初期的谷穗(幼穗)和成 熟期的谷穗(成熟穗)进行了转录组测序分析。结果 发现有 30 个 MADS 基因在谷子幼穗和成熟穗中表 达,其中 4 个基因在幼穗中有较高表达量,6 个基因 在成熟穗中有较高表达量。另外荧光定量 PCR 分 析发现,SiMADS44 和 SiMADS62 在谷子幼穗的表达 量高于成熟穗(见图 4)。有趣的是最近的一项研究 表明 SiMADS34(本文中 SiMADS62)基因调控谷穗的 发育,突变体谷子产量降低^[25]。推测 SiMADS44 可 能为另一个参与调控谷穗发育的基因,需要进一步 的功能验证。

注:实验结果用相对表达量表示。内参基因为谷子的18S RNA.

参考文献(References)

- [1] FOLTER S D, ANGENENT G G. Trans meets *cis* in MADS science
 [J]. Trends in Plant Science, 2006, 11(5):224-231. DOI: 10.1016/j.tplants.2006.03.008.
- [2] SMACZNIAK C, IMMINK R G, ANGENENT G C, et al. Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies [J]. Development, 2012, 139: 3081-3098. DOI: 10.1242/dev.074674.
- [3] BECKER A, THEIBEN G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants [J]. Molecular Phylogenetics and Evolution, 2003, 29:464-489. DOI: 10.1016/s1055-7903(03)00207-0.
- [4] SAEDLER H, BECKER A, WINTER K U, et al. MADS-box genes are involved in floral development and evolution [J]. Acta Biochimica Polonica, 2001, 48: 351-358.
- [5] PARENICOVA L, DE FOLTER S, KIEFFER M, et al. Mo-

lecular and phylogenetic analyses of the complete MADS-box transcription factor family in *Arabidopsis*: new openings to the MADS world[J]. Plant Cell, 2003, 15: 1538-1551.DOI: 10.1105/tpc.011544.

- [6] ARORA R, AGARWAL P, RAY S, et al. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress[J]. BMC Genomics, 2007, 8(1): 242. DOI: 10. 1186/1471-2164-8-242.
- [7] WEI B, ZHANG R, GUO J, et al. Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon [J]. PLoS One, 2014, 9(1):e84781. DOI: 10.1371/journal. pone.0084781.
- [8] JIAN M, YANG Y, LUO W, et al. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (*Triticum aestivum* L.) [J]. PLoS One, 2017,12(7): e0181443.DOI: 10.1371/journal.pone.0181443.
- [9] LESEBERG C H, LI A, KANG H, et al. Genome-wide analysis of the MADS-box gene family in *Populus trichocarpa*

[J]. Gene,2006, 378: 84-94. DOI: 10.1016/j.gene.2006. 05.022.

- [10] WANG Y, ZHANG J, HU Z, et al. Genome-wide analysis of the MADS-box transcription factor family in *solanum lycopersicum*[J]. The International Journal of Molecular Sciences, 2019, 20 (12): 2961. DOI: 10. 3390/ ijms20122961.
- [11] LIU J, ZHANG J, ZHANG J, et al. Genome-wide analysis of banana MADS-box family closely related to fruit development and ripening [J]. Scientific Reports, 2017, 7(1): 3467. DOI:10.1038/s41598-017-03897-1.
- [12] MENG D, CAO Y, CHEN T, et al. Evolution and functional divergence of MADS-box genes in Pyrus [J]. Scientific Reports, 2019, 9(1): 1266. DOI: 10.1038/s41598 – 018-37897-6.
- [13]ZHANG X, FATIMA M, ZHOU P, et al. Analysis of MADS-box genes revealed modified flowering gene network and diurnal expression in pineapple [J]. BMC Genomics. 2020, 21(1):8. DOI:10.1186/s12864-019-6421-7.
- [14] KRIZEK B A, FLETCHER J C. Molecular mechanisms of flower development: an armchair guide[J]. Nature Reviews Genetics, 2005, 6: 688-698. DOI: 10.1038/nrg1675.
- [15] LIU C, TEO Z W, BI Y, et al. A conserved genetic pathway determines inforescence architecture in *Arabidopsis* and rice[J]. Developmental Cell, 2013, 24(6):612-622. DOI: 10.1016/j.devcel.2013.02.013.
- [16] YOSHIDA A, SASAO M, YASUNO N, et al. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition [J]. Proceedings of the National Academy of Sciences, 2013, 110(2):767-772. DOI: 10.1073/pnas.1216151110.
- [17] LI P,ZHANG Q, HE D, et al. AGAMOUS-LIKE67 cooperates with the histone mark reader EBS to modulate seed germination under high temperature [J]. Plant Physiology,

2020,184:529-545. DOI: 10.1104/pp.20.00056.

- [18] WU R, WANG T, WARREN B, et al. Kiwifruit SVP2 controls developmental and drought-stress pathways [J]. Plant Molecular Biology, 2017, 96: 233 - 244. doi: 10. 1007/s11103-017-0688-3.
- [19] JIA J, ZHAO P, CHENG L. et al. MADS-box family genes in sheepgrass and their involvement in abiotic stress responses [J]. BMC Plant Biology, 2018, 18:42. DOI: 10. 1186/s12870-018-1259-8.
- [20] DIAO X M. China's grain industry and industrial technology system [M]. Beijing: China's Agricultural Science and Technology Press, 2011.
- [21]ZHANG G,LIU X, QUAN Z, et al. Genome sequence of foxtail millet (*Setaria italica*) provide sinsights into grasse volutionand biofuel potential [J]. Nature Biotechnology, 2012, 30(6): 549-554. DOI: 10.1038/nbt.2195.
- [22] BENNETZEN J L, SCHMUTZ J, WANG H, et al. Reference genome sequence of the model plant Setaria[J]. Nature Biotechnology, 2012, 30(6): 555-561. DOI: 10. 1038/nbt.2196.
- [23] JIA G, HUANG X, ZHI H, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (*Setaria italica*) [J]. Nature Genettic, 2013, 45: 957-961. DOI: 10.1038/ng. 2673.
- [24] PENSIERO J F, VEDETTI A C, Inflorescence typology in Setaria P. Beauv, (Poaceae, Paniceae) [J]. Feddes Repertorium, 2001, 112: 371-385. DOI: 10.1002/fedr. 4921120508.
- [25] HUSSIN S, WANG H, TANG S, et al. SiMADS34, an E-class MADS-box transcription factor, regulates inflores-cence architecture and grain yield in *Setaria italic* [J]. Plant Molecular Biology, 2021, 105 (4/5): 419 434. DOI:10.1007/s11103-020-01097-6.