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Abstract: GenoCAD ( www. genocad.com) is a free web-based application that guides the user to design protein
expression vector, artificial gene networks and other genetic constructs composed of genetic parts. By successively
click icons representing actual genetic parts according to grammatical models, complex genetic constructs composed
of dozens of functional blocks can be designed. But at the last step of design, usually every icon representing
genetic parts has its option. With the increasing of genetic parts database, more and more parts were imported into
GenoCAD library. The process of assembling more than a few of sets of genetic parts can be costly, time consuming
and error prone. At the last step of design it is somewhat difficult to make decision which part should be selected.
Based on statistical language model, which is a probability distribution P(s) over strings S that attempts to reflect
how frequently a string S occurs as a sentence, the most commonly used parts will be selected. Then a dynamic
programming algorithm was designed to solve the problem. The algorithm optimizes the results of GenoCAD design
and finds an optimal solution. In this way, redundant operations can be reduced and the time and cost required for
conducting biological experiment can be minimized.
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become necessary to develop tools andmethodologies to
1 Introduction streamline the design of custom genetic constructs''’.
Gene expression studies, gene network studies, protein

With the development of synthetic biology, it has expression vector design and metabolic engineering are
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some of applications of this technology ">, GenoCAD
is a web-based application to fill the needs of these
scientific studies. It is built upon a solid computational
linguistic foundation and can be used to design

*). Yet, its point and-

synthetic genetic constructs
click graphical user interface enables users to design
complex constructs in a matter of minutes. GenoCAD

of

constructs in the form of grammatical models "' Tt

captures  design  strategies synthetic  genetic
provides a central parts database with each grammar,
and the latest GenoLIB grammar comes with a library of
1943 basic genetic parts that come from 2 000 widely
used plasmids "®'. As proof, the library was converted
into GenoCAD grammar files to allow users to import
and customize the library based on the needs of their
research projects. Users, who elect to create a
GenoCAD personal account, can log in the system to
create project-specific parts libraries, upload new parts
into their workspace and save designs for later use °/.
Thinking of genetic systems as composed of parts, each
with its own function and characteristics, is the design
philosophy of GenoCAD. Promoters, ribosome-binding
sites (RBS), genes and terminators are all categories
of parts that are needed for designing complex genetic

[7-

constructs ' *) in GenoCAD. Decomposing biological

sequences into functional modules as genetic parts is
one of the ways to update the GenoCAD library®’.
When researchers assembling more than a few
specific genetic parts from different categories, the
process is always costly, time consuming and error
In order to streamline this

prone. process,

The BioBrick

Foundation (BBF) has been instrumental in promoting

some

assemblystandards are introduced.
the BioBrick standard. A BioBrick compliant part is a
DNA fragment flanked by a prefix and a suffix
sequence having specific restriction sites! 7" Two
BioBrick parts can be assembled by using a specific
series of restriction digestions and ligations independent
of the parts sequences. Theoretically, any set of genetic
parts compliant with the same standard can be
assembled by using specific restriction and ligation
enzymes. In order to reduce the time and cost of
assembling, researchers and engineers develop robotic
platforms that can help automate the process of
assembling many multi-kilobase genetic constructs. The

determination of an optimal assembly process can be

totally automated by dynamic programming algorithms
el GenoCAD

design, a user can design a synthetic construct by

without thinking of experience In
successively selecting design rules to transform the
structure of the design. At last select specific parts to

"), But more and more genetic

complete the design
parts are imported into GenoCAD. Now, users are
always puzzled to choose a suitable part from few sets
of categories in the last step of a design. To overcome
this, statistical language model (SLM) is introduced in
this paper which can help streamline the process of
design. The first goal of SLM is to build a statistical
language model that can estimate the distribution of
natural language as accurate as possible' !, The
original (and is still the most important) application of
SLMs is speech recognition, but SLMs also play a vital
role in various other natural language applications as
diverse as machine translation, part-of-speech tagging,
intelligent input method and Text To Speech system.
The statistical language model in this paper is based on

the

standard parts. After transforming the design process

statistical parameters coming from BioBrick
into this mathematic model, a dynamic programming
algorithm can be carried out to choose suitable parts
composing the final genetic construct. The algorithm
takes experience of former iGEM design into account to
reduce the cost, time and errors of the assembling
process. This method can not only optimize the result of

GenoCAD design but also can help design new projects

by considering former experience.

2 Materials and methods

We use link http://parts. igem. org/das/parts/entry _
points/ to download the entry points to the parts that
we want to analyze in June 2014. The version of this
file published at that time included 7 242 parts. A Perl
script was developed to parse out the content of each
part from the link http:// parts. igem. org/das/parts/
features/? segment=part#. And decomposed them into
structured data format, which could be imported into a
MySQL database. After into a MySQL

database, 75 744 features were parsed out from these

imported

parts. The parts include both basic parts (e.g. promoter
and RBS) and composed parts, which include multiple

basic parts (e.g. device, project and composite). The
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basic parts include categories of Regulatory, RBS,
Coding, Terminator and Plasmid Backbone. We
queried the MySQL database to extract the basic parts
and counted their usage in composed parts. We also
developed Perl script and SQL sentences to analyze
composed parts and counted the usage of two adjacent
basic parts ( parts pair) in them. By querying the
MySQL database, we extracted a set of 1 682 basic
parts compliant with RFC 23 standard'”'. It means
that the sequence of these basic parts does not include
any of the restriction sites used by the assembly
standard. These 1 682 basic parts include 405
promoters, 42 RBSs, 57 terminators and 1 178 genes.

We imported these basic parts into GenoCAD to design

new genetic constructs. And the usage frequencies of
basic parts and the usage frequencies of parts pair in

the dataset can be calculated.

3 Grammar design in GenoCAD

The general methodology of developing grammarsin
GenoCAD to model the structure of synthetic genetic
constructs has been described detailedly before'* '*.
The grammar used in this article is similar to the
context-free grammar ( CFG )" but has new
rewriting rules to allow protein fusion. We used
biobrick_icon_set to represent the categories of basic

parts. The full grammar is described in Table 1.

Table 1 The grammar used in this paper

Rule Comments Left term Right term

| Transform aStart (RFC 23) into a plasmid backbone (Pb), a prefix (Pr), S Pb Pr Ca Su
a cassette (Ca) and a suffix (Su)

2 Transform a cassette (Ca) into two cassettes (Ca) with a scar (Sc) in between Ca Ca Sc Ca

3 Reverse the sequence orientation of a cassette (Ca) Ca [Ca]

4 Transform a cassette (Ca) into a promoter (P), a scar (Sc), a cistron (C), Ca P Se C Se T
a scar (Sc) and a terminator (T)

5 Transform a cassette (Ca) into a promoter (P ), a scar (Sc), a cistron(C) Ca P Sc C

6 Transform a cistron (C) into two cistrons (C) with a scar (Sc) in between C C Sc C

7 Transform a cistron (C) into a thbs (R) and a gene (G) with a scar (Sc) in between C R Sc G

8 Transform a terminator (T) into two terminators (T) with a scar (Sc) in between T TSeT

9 Transform agene (G) into two genes (G) with a scar (Sc) in between G G Sc G

4  Mathematic model

At the last step of GenoCAD design, every icon has its
option. It is somewhat difficult for designer to choose
the most suitable part to finish the design (Fig.1). To
overcome this, statistical language model ( SLM) is
introduced. In this model, whether a sentence (S) is
meaningful and reasonable is based on the probability it
will happen. A sentence (S) is composed of a
sequence of words. Here S is a genetic construct
designed in GenoCAD and the words are imported
basic parts. Now, S = part,, part,, ---, part, and we
need to know its P (S) — - —the probability it will
happen.

P(S) = P(part, ,part,,... ,part, ) (1)

According to conditional probability formula

P(part, ,part, ,...part, )

= P(part,) * P(part, |part,) -

(2)
P(part, \part, ,part,) -+

P(part, | part, ,part, ... part,_,)

In formula 2, P (part,) means the probability
part, appears in the design. P(part, | part,) means the
probability that part, appears with part, prior to it.
According to formula 2, the probability part, appears is
determined by all the parts appear prior to it. The P
(part,) and P (part, | part,) are easy to calculate,
but calculating P (part, | part, ,part,) is not easy. And
calculating P (part, | part,, part,, ---, part,_, ) is very
difficult, because much more variables are involved in.
The conditions are too complex to gauge. Based on
Markov Hypothesis we think the probability a part

appear is only concerned with the part prior to it.
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Fig. 1 At the last step, it’ s always difficult to choose a suitable part

So formula 2 can be simplified as
P(S)
= P(part,) - P(part,|part,) +

P(part, | part,) P(part, |part,_,)

P(part,|part,_,)

NowP (S) ——-the probability a S will happen can
be calculated. Formula 3 is the Bigram Model of
statistical ~ language model. Then according to
conditional probability formula
P(part,_, ,part,)

P(part,_,)

We use usage frequencies of two adjacent basic

P(parli‘parti—l) = (4)

parts (parts pair) and usage frequencies of basic parts

to estimateP ( part_,, part,) and P ( part_, )
respectively.

Count(part,_, ,part,)

P L t,) =
(part,_,part,) Count(all_parts)

Count(part;_,)

P . ~
(part,-,) Count(all_parts)

Count(part,_, ,part;)

And P(part,

art,_,) =
part-,) Count(part,_, )

(5)

In this way any component in formula 3 can be
calculated.

At the last step of design (Fig. 1), there are too

many combinations of basic parts to finish the design.

Which one is the most reasonable and meaningful? We
think the one with the largest appearing probability is.
We have all the candidate paths, and a path will result
a S (a path
path is represented with PATH.

PATH = arﬁm&x(P(S) )

a S = part, ,part,,---,part, ). The best

To avoid memory overflow when performing
algorithm in computer, we take the log of P(S).
PATH

= M%HX(IOgP(S))

part,_,))) (6)

ﬁ P(part;

=2

ar%TSlax(log(P(partl) X

argmax(logP(part,) + 2, logP(part, | part,))

According to formula 5, we got formula 7 and 8

Couni(part,_, ,part,)

P<parti‘parti—l): (7)

Count(part,_,)
Count(part,)

P(part,) = (8)

Count(all_parts)

Because we extracted the dataset from a relatively
sparse corpus, the zero-frequency problem would arise
when parts pair never occurred in the training corpus.
To overcome this, we use Add-one ( Laplace )
Smoothing' ', So formula 7 should be

Count(part,_, ,part;) + 1

P(parti‘Parti—l) = (9)

Count(part,_;) + N
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In formula 9 N is the number of Bigram ( parts
pair). Formula 8 and 9 will be used to fill the
corresponding component in formula 6. The resulted
PATH will be the S with the largest appearing
probability in all candidate paths. And we will use
dynamic programming algorithm to select the PATH

from all candidates.

5 Algorithm

Now we need to find a path in the lattice in Fig. 1.
This path is composed of series of parts and will be the
S with the largest probability. It means how we can
solve formula 6. The algorithm originates from the

51 and will consist of three steps.

Viterbi algorithm''

Firstly, build a candidate lattice. Every icon
(category) corresponds to one column, and every node
in a column corresponds to a basic part. At the start
and end of the lattice, BEG and END columns were
added. In these two columns, two virtual nodes of B
and E were added respectively (Fig. 2). Every node is

a triple —tuple < name, V, P>, and the first element

name was filled with basic part name.

Secondly, fill the lattice.In the lattice from left to
right, for every node of a triple-tuple < name, V, P>,
the V and P are calculated and filled. V will be filled
with the maximum value selected from combining
operation of two nodes in adjacent columns. P will store
the address of the node prior to it where V comes from
via combining operation.

1) The first column, for the B node let V= 0 and
P= NULL.

2) The second column, every node < name, V,P
> (name € {10500, ROO11, --- , RO040, ---}) will
combine with B node and calculate its V and P.

V=V, + logP(part) = logP(part)

P = address_of_B

3) The third column, every node <name, V, P >
(name € { R0O032, R0034, --- , RO041, ---}) will
combine with every node in the second column and
calculate its V and P.

V=max{V,,, +logP(part|part,,) |

P = address_where_V_comes_from

PRO RBS GEN TER TER
BEG I > >< [_\ | | END
L/
100500 R0032 E0020 B0010 B0010
-2.03 -14.67 -14.67 -16.79 -21.76
0500 R0032 Co051 B0012
B address address address address address
B E
0 R0O011 B0034 E0030 B0012 B0012 -20.99
null -4.61 -7.61 -12.09 -16.79 2090 | | Boorz
R0O040 B0034 C0051 Boo10
B address address address address address ‘/‘
R0040 B0041 C0051 B0054 B0054
-4.04 -7.21 -12.09 -16.79 -20.99
) R0O040 B0034 E0030 Boo1o
B address address address address address

......

......

Fig. 2 The process of building lattice, filling lattice, and recalling

4)Repeat 3), every node in current column will

combine with every node in prior column and calculate

its V and P.

5)In the END column, V is the maximum value
selected from the nodes in prior column, P will store

the address of the node where V comes form.
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Thirdly, recall and get thePATH. Start from node
E, search the P prior to it continually (Fig. 2).

Finally, the PATH with the largest probability will
be found and the resulted S is the optimized genetic
construct. If the length of S is L and the maximum node
number in a column is D, the algorithm complexity of
this algorithm will be O (L - D*), and the algorithm
complexity of exhaustive algorithm is O(D").

6 Results

To demonstrate how to optimize a GenoCAD design,we
selected the banana odor biosynthetic system (http://
parts. igem. org/Part; BBa _ J45900 ) designed and
implemented by the MIT iGEM team in 2006. The
system contains two expression cassettes: one with
BAT2 and THI3 genes produces isoamyl alcohol, and
the second one catalyzes the conversion of the cellular
metabolite leucine to isoamyl acetate or banana odor.
We design the system according to the grammar
described previously. At the last step, we need to
choose

suitable basic parts to finish the design

Pb Pr P S¢

(Fig. 3). After the genes we want to express are
the will  be
implemented by a Perl script. At the first round of

determined , optimizing  algorithm

implementing algorithm, it recommended the parts
series R0040-B0034-]J45008 -B0030-J45009 -R0040
- B0034 - J45014 - BO010 — B0012. At the second
round, when we excluded RBS B0034, the algorithm
recommended the series R0040 — B0030 - J45008 -
B0030 - J45009 — R0040 - BO030 - J45014 - B0010 -
B0O012. At the third round, when we excluded promoter
R0040 in the first column, the algorithm recommended
the series RO011 —B0030 - J45008 —B0030 — J45009 —
R0040-B0030 - J45014 - B0010 —B0012. And this is
the real parts what banana odor biosynthetic system
consists of. When we develop new project and carry out
the algorithm at the last step, the algorithm will give
out an optimized result based on experience. If we need
some other options, we can exclude some parts and
repeat the algorithm. It will recommend some other
optimized results for consideration. If we have known
that some parts are definitely connected, we can

determine them first then implement the algorithm.

R Sc G Sc R Sc G Sc P Sc R Sc G Sc T Sc T Su

Gatvye @atvn © alvgy @atvxo © alvny @atvxa @ protei @atvxa © alvny @atvxe © protei @atvxe © alvgy @atvxe @ atlvny @atvxe @ protei @atvxa © doubl @atvxe © doubl @atvun

O atvgh O atvnw O atvrm

Qalvip Qalwp
O alvgi O atnx 0 a1y O atvnx O alwg
Qalvy) © atvny ©atver O atvny © atwxr
Oatvgk O atvnz O alws O atvnz ©alvis
©atvyl O atvol ©atwt O atvol
© atvan O atvol © alvu O atvol
Qalvyn QalvoZ © alvy alvo2
©atvgo Qalvol © alviow ©alvo3
Qalvyp Qalvod © atvic O alvod
©alvay Qalvos O alvy ©alvos ©atvy
Oatvyr ©alvof O atvz ©alvob O alvz
Qalvgs Qatvo? ©atwl O atvo? Oatwi
O atvgt O alvod O atwi alvos 0 atwi

O atvgh O atvnw

D alwp © alvoz ©alvoz
O atvgi O atvnx © alvy © alvpl ©alvpl
O atvyj Qalvny O atvar © atvp1 S atvpl
O atvgk Qatwnz O atwxs Oalvp2 O atvp2
G atval ©atvol ©alvd ©alvp3 ©alvp3
©atvin O atvol ©alvu ©alvpd © alvp4
©atvan Oalvo2 O alwps
©alvigo Qalvol a
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O atvat Qatvod O atwi Qalwphb Qalvph

Fig. 3 The last step of designing the banana odor biosynthetic system

7 Discussion

This article has presented a statistical language model

for synthetic biological parts assembling. After
converting the BioBrick parts assembly process into a
Bigram Model, a dynamic programming algorithm can
be carried out to select an optimized result. The
algorithm can be iterated then gives out different

optimized results for consideration, but it can still not

be embedded into other software. The method can be
not only used to optimize a design in a synthetic
biological robotic platform such as GenoCAD, but also
independently used to automate the DNA assembly
process in synthetic biology. After inputting categories
of synthetic biological parts according to a grammar,
the algorithm automatically assemble suitable parts to
form a reasonable construct based on experience. In
this way, redundant operations can be reduced and the

time and cost required for conducting biological
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experiment ought to be minimized. Compared with
other methods''” | the algorithm complexity of this
method is O(L - D*). It doesn’ t possess the advantage
of speed but it can select the most suitable parts to
form a bio-system referred to other successful cases,
but it is better than the algorithm complexity of
exhaustive algorithm which is O (D"). As described
previously, this method is based on Bigram Model. It
means every part involved in the assembly process is
only concerned with the part prior to it. But in real
world DNA assembly process, for an example, whether
a gene can be expressed effectively is not only related
to its RBS but also its promoter. In order to simulate
real world assembly process, N-gram Model should be
introduced. This model means every part involved in
the assembly process is concerned with N-1 parts prior
to it. But in this model the conditional probability is
very difficult to calculate. When N = 3 or 4, though
the accuracy in other natural language applications
such as machine translation, part-of-speech tagging,
intelligent input method will increase significantly,
powerful computer will be needed!'’. Next step we
will develop a 3-gram Model and take plasmids
backbone sequence into account to facilitate the DNA
assembly process in synthetic biology.

When calculating the conditional probability, we
used Add-one (Laplace) smoothing to overcome zero-
frequency problem. Tt is always not a good choice "',
It was used for considering that any two parts compliant
with the same standard can be connected and for
simplicity. Due to few applications of statistical
language model in synthetic biological informatics, we
do not know which smoothing technology is more
effective. But the weakness of Add-one ( Laplace)
smoothing such as giving too much of the probability
space to unseen events, worst at predicting the actual
probabilities of bigrams are well-known'"”'. We will
develop 3 or 4-gram Model and expand the corpus to
simulate the assembly process more reasonably. And
other smoothing technology such as Good-Turing

Smoothing, Katz backoff,

[19-20]

Interpolation  Smoothing
will be considered and used to improve the

model. As

downloaded a relatively sparse corpus from iGEM

mathematic described previously, we

website. We consider expanding the corpus to widely

used plasmids and count the usage of features and two

or three adjacent features. In this way, the statistical
language model can be used more universally and
tested in synthetic biology. But the description of the
nature of parts is a more difficult issue. This can be
solved by the development of an ontology giving the
community a common controlled vocabulary to describe
genetic parts. And developing the Synthetic Biology

Open Language will promote this process.
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